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AFIT-ENP-14-M-42 

Abstract 

 The Defense Threat Reduction Agency and the Air Force Office of Scientific 

Research require sensors to detect biological agents better, faster, and cheaper.  This 

research explores the use of graphene functionalized with single strand deoxyribonucleic 

acid (ssDNA) aptamers as a detection method for the Sterne strain of Bacillus anthracis.  

This research is interesting because of the unique electrical and chemical binding 

properties of graphene and its interaction with ssDNA and DNA.  The interactions of 

graphene functionalized with ssDNA in response to B. anthracis spores, non-

complimentary and complimentary DNA were explored in static and dynamic aqueous 

environments with indirect complimentary binding confirmation via Raman spectroscopy 

and atomic force microscopy.  The results suggest aptamer functionalized graphene can 

be used to detect B. anthracis spores, non-complimentary and complimentary DNA 

sequences.
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OPTIMIZATION OF GRAPHENE BIOSENSORS TO DETECT BIOLOGICAL 

WARFARE AGENTS 

I. Introduction 

1.1 Motivation 

The Biowatch system, the premiere U.S. biodefense system, needs 12 to 36 hours 

to determine if a pathogen is present.  This delay coupled with a total system cost 

estimate of $5.8 billion dollars has many in government seeking other ways to detect 

biological agents [1].  The Defense Threat Reduction Agency recently put out a call to 

industry to determine other ways to develop biosensors that can  detect biological 

weapons cheaper, faster and more accurately than the current systems [2].  Recent 

advances in nanotechnology, micro-electromechanical systems, and the proliferation of 

genetic data and laboratory techniques and equipment via the internet has moved 

biological research and development projects from large, secure government institutions 

to anyone willing to pursue biological weapons development.  As a dated example, the 

terrorist organization Aum Shinrikyo used Bacillus anthracis (B. anthracis) spores 

against their Japanese countrymen in 1993 [3].  Their organization consisted of academic 

research scientists, wealthy industrialists, and government members that helped the group 

gain access to B. anthracis stockpiles.  This knowledge and access to previously 

unavailable materials allowed them to grow and use B. anthracis on an innocent 

population.  Their leaders may have picked a different path had they known the agent was 

a vaccinated strain [4].   



 

 

2 

 

 

This event occurred before the Internet was available to the average person.  

Anyone with internet access can find sections of the B. anthracis genome on the National 

Institutes of Health website [5], low cost polymerase chain reaction units needed to 

isolate and amplify genetic code for $599.00 [6] and the online resources to develop and 

purchase primers to isolate genetic code for $50.00 [7].   

This turn of events has many U.S. Government officials worried, especially after 

the anthrax attacks in 2001.  The Center for Disease Control estimates the anthrax 

cleanup cost at more than $320M [8].  Robinson, Heden and Schreeb calculated and 

compared the cost of civilian casualties per square kilometer at $2000.00/km2 with 

conventional weapons, $800.00/km2 with nuclear weapons, $600.00/km2 with nerve gas 

and $1.00/km2 with biological weapons[9].  This estimate shows how much capital is 

required to damage a populated area.  The obvious conclusion is that a low cost, limited 

investment in bioweapons could do massive amounts of economic damage.   

People affected by a biological attack usually are unaware until they express 

symptoms associated with the biological agent.  For example, B. anthracis causes anthrax 

in humans and it takes three to seven days to express symptoms after agent exposure.  

The initial symptoms mimic the early stages of influenza and could confuse medical 

personnel.  This delay puts the exposed victim at risk and gives the perpetrators time to 

escape and time to decide whether to claim responsibility for the attack.  The Stimson 

Center for International Progress has studied globalization and terrorism and note that 

bioweapons could be developed in a Pakistani hut just as easily as in a fully equipped 
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Western laboratory [10].  The previously mentioned tools make it much easier to design 

new biological weapons for use against civilians and government personnel.   

To counter a biological attack, it is necessary to identify the biological agent as 

quickly and as accurately as possible and send out a warning signal once positive 

identification is available.  There are a number of biological detectors available to 

identify agents but they all suffer from a number of issues to varying degrees.  The first 

issue is the time required to detect the agent in question and the second issue is the 

inability to discriminate between non-pathogenic and pathogenic organisms in the field 

[11].  Ivnitski, Morrison, and O’Neil are in agreement with DTRA and DARPA as they 

note shortcomings in demonstrated sensor sensitivity in the laboratory versus the field, 

transportation/weight related issues, specialized operator training, and the increase in 

sensor operations costs and maintenance costs.  Total program discussions illustrate the 

reality that new technologies come with additional costs and issues that are not 

considered in the laboratory.  Sensor sensitivity, weight, and operator training were 

considered during the literature review and were applied to the choice of sensor research.   

To address some of these issues, a novel graphene biosensor approach was 

constructed and tested.  This unit was label-free aptamer biosensors with single stranded 

DeoxyriboNucleic Acid (ssDNA) as the aptamer attached to a graphene base.  The 

aptamer (ssDNA) and graphene act as the sensor element.  The ssDNA recognizes and 

binds to complimentary DNA (cDNA) strands or spores based on their structural 

configuration and that conformational binding event would be detected by a change in the 
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graphene resistance.  This approach attempts to address the DTRA requirements for 

quick, accurate, and low-cost sensors.   

1.2 Research Topic  

Manoor showed it is possible to detect Gram-positive and Gram-negative bacteria 

via antimicrobial peptides bound to a graphene-gold circuit in approximately 200 seconds 

[12], while Mohanty and Berry showed it is possible to detect single microorganisms 

using chemically modified graphene [13].  The time limit and protocols used to detect the 

separate strains of bacteria inspired the study and development of a label-free graphene 

biosensor functionalized with ssDNA specific capture elements.  It has been 

experimentally shown that ssDNA attaches to graphene due to π- π bonds and detaches 

from graphene in the presence of cDNA[14].  We hypothesized that this property could 

be modified with a chemical linker to secure it to the sensor base to create a reusable 

sensor unit.  Our unique approach uses 1-PyreneButanoic Acid, Succinimydal Ester 

(PBASE) molecules [15] to chemically link modified ssDNA capture elements [16] to a 

graphene base and use it as a sensor.  The ssDNA was selected because it was designed to 

detect the DNA of spores from the B. anthracis Sterne strain [16].  The chemical linker, 

PBASE, was selected due to its room temperature (303K ~ 70F) graphene binding ability.  

It provides a succinimidyl ester as an anchor point for amine modified ssDNA.  Graphene 

was picked due to its high electrical conductivity (100,00cm/Vs) and functionalization 

properties [17].  Figure 1 conceptually represents a graphene-field effect transistor 

(GFET).  Where the graphene-PBASE-ssDNA sensor is built on top of a silicon wafer in 

a small rectangular area bordered on two sides by gold metallized probe pads sputtered in 
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a T base to base configuration with the graphene functionalized rectangular area 

completing the circuit.   

 

 
Figure 1:  Biosensor overview.  Cross section shows the graphene-PBASE-ssDNA sensor area with gold 
and chromium contacts on the sides.  The top down view shows the overall sensor with dimensions 
29mm by 22.5mm.  The functionalized sensor area is on average 0.6 mm by 0.5mm.  The number of 
PBASE molecules and ssDNA molecules has been reduced for conceptual clarity. 

 

The graphene is isolated from the circuit via thermally grown silicon dioxide.  This 

setup helps prevent stray charges from interfering with the electrical current across the 

graphene.  The design allows for easy measurements for static tests and dynamic 

microfluidic tests as target DNA sequences bind to the functionalized ssDNA.  This setup 

produces a useful field effect transistor that makes it possible to detect changes in the 

conductivity of graphene via the conformational binding events between ssDNA and 

cDNA and mimics a similar configurations used in some hybrid graphene sensors [18] 

and other GFET sensors [19], [20].     
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1.3 Research Objective 

This study seeks to characterize detected changes in resistance of a GFET due to 

conformational binding events between a B. anthracis derived aptamer and its 

complimentary sequence.   

This is accomplished with a graphene surface that has been functionalized with 

different aptamer sequences.  The first sensor uses a 22 base pair aptamer functionalized 

on the graphene surface to show initial proof of concept.  The second sensor uses a 77 

base pair B. anthracis capture aptamer functionalized on the graphene surface to 

demonstrate spore capture capability[16].  The sensor response and sensitivity was 

checked via exposure to the following targets in deionized water:  a 22 base pair 

complimentary sequence, a 39 base pair complimentary sequence, a 77 base pair 

complimentary sequence, a 18 base pair degenerate sequence, and B. anthracis spores.  

The targets were introduced to the sensor under dynamic flow and static fluid conditions 

to determine the effect on signal detection and elucidate that knowledge.   

1.4 Document Structure 

This document is organized as follows: Chapter II reviews biological detection 

and label free bio-FET graphene sensor systems, followed by the structural properties of 

B. anthracis, ssDNA and cDNA aptamers, the PBASE attachment molecule, attachment 

fluorophores, graphene, the silicon (Si) substrate, biosensor design, construction and 

usage.  Chapter III explores the methodology used to analyze the aptamers and 

understand the sensor response.  Chapter IV presents the results and analysis of the data.  

Chapter V provides a summary of conclusions and future research opportunities.  
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Supplemental materials include Appendix A (Equipment and Settings), Appendix B 

(Circuit Recipes) and the references section.   

 

II. Literature Review 

This chapter contains seven sections that provide background and theoretical 

information relevant to this study.  The first section explores biological detection and 

focuses on label-free graphene based DNA biosensors with single strand and double 

strand DNA detection elements.  The second section introduces the B. anthracis lifecycle 

and its cellular structure.  The third section focuses on ssDNA aptamers, PBASE and the 

Texas-Red fluorophore used to detect cDNA with attention given to their structures and 

chemical binding capabilities.  The fourth section introduces the structure, electrical and 

chemical properties of graphene.  The fifth section introduces the structure and electrical 

properties of the silicon oxide (SiO2) wafer platform used to attach and test the graphene-

PBASE-ssDNA sensor.  The sixth section introduces the biosensor design used in this 

research.  

2.1 Biological Detection 

Biological detection in the United States military has been treated like chemical 

detection for the last 100 years.  This is unfortunate, because biological weapons have 

different characteristics that affect detection.  Chemical weapons have definite signatures 

and are relatively stable while deployed to the target.  The ability of chemical weapons to 

effect targets decreases after the initial deployment due to factors such as sun and rain 

exposure [21].   
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Biological weapons are living organisms with the ability to reproduce and adapt 

to new situations.  Single celled organisms, like B. anthracis, reproduce anywhere from 8 

minutes to 40 minutes per generation.  The pathogenic variants, Vollum and Pasteur, 

reproduce 2 to 3 times as fast as nonpathogenic variants such as the Sterne strain under 

pH conditions from 5.5 to 6.5 [22].  The reproduction rate allows for polymorphisms 

(changes) in the population that result in genetic variations that could make them difficult 

to track.  As an example, B. anthracis and B. cereus are considered homologous 

organisms, in that they share a common ancestor and common genes.  This makes 

distinguishing them difficult as strains of B. cereus have been found in the Congo that 

have the same pXO1 and pXO2 plasmid strains found in B. anthracis.  B. cereus isn’t 

normally considered lethal but these particular strains have managed to infect and kill 

members of the great ape population in Cameroon [23].  To make matters even more 

interesting, there have been over 1200 identified B. anthracis strains to date [24].   

Once biological agents are released into the environment the chance of genetic 

mutation increases based on the regular bacterial exchange of genetic material via pili 

(tubular growths that allow bacteria to exchange genetic material).  This exchange has the 

potential to modify the infectivity, virulence, and pathogenicity of the microorganisms 

involved (see the B. cereus discussion above).  These mutation events are based on 

multiple probabilities whose elucidation is well beyond the scope of this paper.  The 

important point is that it could happen and the question is how to detect it.  This leads to 

the types of detection schemes that are recognized by the defense and medical 

communities.       
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There are two types of recognized detection categories, “detect to protect” and 

“detect to treat”.  The “detect to protect” category means a warning is given in time for 

personnel to don the appropriate protective gear.  The main purpose of the “detect to 

treat” sensor is to identify the agent for medical personnel to provide countermeasures 

prior to the development of symptoms.  The biological detectors that have been 

developed to “detect to treat” and “detect to protect” against biological agents have a 

number of shortcomings due to technological immaturity and a mischaracterization of 

behavior associated with living organisms versus non-living chemicals.  Unfortunately, 

biological agents have a number of attributes that make biological detection difficult.   

The first attribute is the large number of environmental biological signals (bio-

noise) from local microorganisms that confuse detector readings.  The inability to discern 

the signal from the noise either, masks the agent signature and causes the sensor to report 

a false negative for the event in question or causes the sensor to transduce and send a 

false positive signal [25].  Both situations are bad and can task emergency management 

personnel needlessly. 

The second attribute deals with the inability to distinguish between pathogenic 

and nonpathogenic microorganisms [26].  The regular exchange and incorporation of 

foreign genetic material by bacteria for food, genetic repair, and genetic diversity further 

confound the distinguishability problem [27].   

The third attribute is the infection time, which depends on the strength of the host 

immune system and the type of organism.  If the host has a weak immune system due to 

age or poor health, the infection may become apparent very quickly.  If the infection 
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succeeds, the symptoms usually show up three to seven days for most biological agents.  

Most initial human symptoms mimic the flu and become more pronounced and deadly as 

time passes [28].  The misunderstanding of these three attributes has caused the US 

Government to spend over $3 billion dollars in an attempt to address the prevention of a 

biological attack.   

To address detection issues, several notable studies have been conducted:  

Defense Advanced Research Projects Agency (DARPA) funded the 2010 Chemical and 

Biological Sensor Standards Study.  Its purpose was to review the available biological 

and chemical sensors and determine quantifiable standards and figures of merit that could 

be used to measure and compare those systems[25].  This effort also helped the US 

Government by filling a critical hole in the design and evaluation of sensors.  The study 

identified sensitivity, probability of detection, false positive rate, and response time as 

figures of merit that need to be reported at all stages of sensor development to reduce the 

ambiguity associated with the evaluation of biosensors.   

The 2011 Chemical, Biological, Radiological Technology Survey, sponsored by 

the Joint Program Executive Office, Chemical Biological Medical Systems and DTRA,  

evaluated 282 and selected the top 60 biological weapon detectors available for purchase 

by the Department of Defense (DoD).  The systems were scored against four scenarios: 

field use; mobile or field laboratory; diagnostic laboratory or point of care use; and high 

sensitivity, high throughput analytical laboratory.  They were scored at sublevels focused 

on biological agent specific systems; radiological agent specific systems; chemical agent 

specific systems; and multifunctional systems [29].       



 

 

11 

 

 

Biological detection has drawn the notice of laboratory clinicians concerned about 

their laboratory capabilities to determine a biothreat and the comparability of biosensor 

results.  Justino, Rocha-Santos and Duarte explored sensor system figures of merit and 

identified calibration sensitivity, selectivity, limits of detection, repeatability and 

reproducibility as critical figures of merit that need to be reported for clinical biosensors 

developed in laboratory or field settings.  They noted that there were no comparable 

results between sensor systems that were developed in different laboratories [30].       

2.1.1 Technology Review 

There are a number of technologies and techniques designed to detect and 

characterize single celled organisms.  Speigelman, Whissell and Greer review PCR units, 

biochemical methods, DNA microarrays, and oligonucleotide probes [31].   

PCR units are the gold standard of microbiological identification and can generate 

millions of DNA strands for analysis from a single strand of subject DNA.  PCR units 

can give false representations of the microbial environment via amplification of the 

wrong DNA through contamination of the sample or through cross reactivity with 

environmental unknowns [32].   

DNA re-association kinetics and %G&C fractionation are biochemical methods 

that provide information on large bacteria populations.  Unfortunately, DNA re-

association kinetics depend on the size of the population and can take weeks to complete.  

Whereas %G&C fractionation cannot discriminate below the genus level as it relies on 

the percent composition of G&C and does not provide definitive identification of the 

genus involved.   
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DNA microarrays are large oligonucleotide arrays hybridized with fluorophores.  

The operational principles are deceptively simple.  A low powered laser is emitted in 

their direction.  The fluorophores excite and emit a detectable wavelength.  This method 

can help determine which bacterial samples respond to the oligonucleotide.  The 

technology may be susceptible to oligonucleotide array cross functionalization which 

could indicate a higher population characteristic than are present.  Oligonucleotide probes 

can be designed to specifically attach to a particular bacteria taxonomic group.  The 

specificity allows researchers to target and determine the frequency of particular bacteria 

within the bacterial community.  The specificity can be blessing as well as a curse 

because it may miss certain bacteria that are part of the taxonomic group but do not have 

those particular proteins expressed on their surface [31].   

Oligonucleotide probes can be used in a label or label-free fashion.  A “label” 

oligonucleotide is designed to attach itself to the bacteria of interest.  It usually has a 

signaling mechanism (radioactive phosphorus, fluorophore, quantum dot) integrated into 

it and that requires electromagnetic interrogation/detection from a macroscopic device or 

person.  For example, labeled oligonucleotides are used in enzyme-linked immunoassays, 

which require some sort of interrogator and detector.  A “label-free” oligonucleotide is 

one that does not need to be interrogated by an outside source but is usually monitored 

for a configuration change as the bacteria of interest are captured due to the 

complimentary binding of the oligonucleotide to the bacterial surface.   
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2.1.2 Graphene Sensor Review 

Graphene sensors are only limited by the imagination of the designer.  Saltzgaber 

et al., used graphene grown on Cu foil via the chemical vapor deposition (CVD) method.  

They then spun a polymethyl methacrylate (PMMA) onto the graphene/Cu square to get a 

PMMA/graphene/Cu transfer unit.  This unit was placed into copper etchant to dissolve 

the copper and leave a PMMA/graphene layer for transfer to a 500nm SiO2 layer on a 

circuit.  The PMMA/graphene/SiO2/Si circuit was dried for 4 hours at 30 C and then open 

air heated for 4 hours at 350 °C to remove the PMMA.  The graphene was patterned in 

3.0 µm by 10.0 µm sections using photolithography and a dedicated plasma etcher [19].  

The next step fabricated 1.5nm Cr and 30nm Au electrodes onto the circuit leaving a 3.0 

µm by 3.0 µm graphene area exposed.  This section was cleaned in an Ar/H2 environment 

to ensure a clean surface.  Then the graphene surface was functionalized with PBASE 

and a thrombin specific DNA aptamer (15 base pairs) to detect thrombin in real time [19].  

The analyte was delivered at 25 µL/min in a 5.0 mM MES buffer  They demonstrated 

binding reversibility and reported device stability over the course of one week [19].  

Ohno et al, had a similar setup that used kish graphite exfoliated onto a 280 nm thick 

SiO2 layer on top of a p+-Si substrate with  PBASE functionalization and aptamers to 

detect immunoglobin E[33].   

According to Kuila, there are at least 18 different graphene based sensor 

variations that use detection elements such as glucose, cholesterol, NADH, hydrogen 

peroxide, nitrites, nitrous oxide and aptamers (such as ssDNA).  Six of these units use 

graphene, epitaxial graphene and graphite oxide as bases to detect DNA via changes in 
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fluorescence intensity or electrical current [34].  The sensor materials and detection limits 

listed in Table 1 illustrate the types of processed graphene that can be used to inform the 

detector elements and the limits of detection.  The majority of the sensors are based on 

fluorescent detection, which requires an illumination source, a foreknowledge of the 

ssDNA sequence and a fluorescent molecule attached to the ssDNA.  The size and 

position of the fluorophore on the ssDNA can be an issue and should be taken into 

account as the addition of extra bond sites brought by the fluorophore can cause 

unanticipated attachments with cDNA and the environment.   

The other graphene sensors rely on drain current and gate voltage changes to 

detect changes on the graphene via conformational binding events between the aptamer 

and target of choice.  This is accomplished by the functionalization of the graphene 

surface with different molecules such as EDTA, amines, PBASE, etc.   

 

Table 1:  Graphene Sensor Characteristics. 
Sensor  
Material 

Sensor Response Detected  
Element 

Limit of 
Detection 

Source 

Graphene Oxide Fluorescence DNA 103 pf µm Kuila [34] 
Exfoliated Graphene Electrical Current DNA 1 µM Kuila [34] 
Graphene Oxide Fluorescence DNA 200 nM Kuila [34] 
Graphene Oxide Fluorescence DNA 2 nM Kuila [34] 
Chemical Vapor 
Deposition Graphene  

Current/Gate Voltage ssDNA 10 nM Pumera [35] 

Reduced Graphene 
Oxide 

Current/Gate Voltage ssDNA 10 nM Pumera [35] 

Aminated Graphene 
Oxide 

Current/Gate Voltage ssDNA 1 B. Cereus Mohanty and Berry 
[13] 
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The table shows the detection limit for CVD graphene 10 nM using a ssDNA 

aptamer.  This detection limit serves as a reference point for sensor development as 

discussed in Chapter 2.6.  Chen, et al. reported label-free sensing with a 12 mer (12 base 

pair) DNA sequence at pico-molarity concentrations using gated field effect CVD 

graphene transistor [36].   

2.2 Bacillus Anthracis 

B. anthracis is a bacterial species that has infected humans since man 

domesticated herbivores with one of the earliest known infections being the Fifth Plague 

in Egypt [37].  Its presence on every continent [38], its spore-forming ability for survival 

in harsh environments and its lethality, once introduced into the mammalian host and left 

untreated, make it one of the most feared potential biological agents on Earth.  The CDC 

classifies it as a Category A agent due to the potential to become a national security 

risk[39].   

2.2.1 Lifecycle 

B. anthracis is a zoonotic organism found in sheep, cows, goats, pigs and other 

domestic herbivores throughout the world.  When exposed to oxygen or adverse 

conditions it forms a hard shell and becomes dormant.  The shell, called an endosporium 

or endospore, allows it to lie dormant until ingestion by domestic livestock, or inhalation 

by humans.  Once in the anaerobic environment of a mammalian body (humans, cows, 

etc), B. anthracis propagates and releases protective antigens, lethal and edema factor 

toxins that cause anthrax [40].  Moayeri provides a detailed review of lethal and edema 

toxins [41].  The toxins destroy the cell walls and leak into the blood stream causing 
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system wide septicemia (blood poisoning) that kills the host.  B. anthracis generates an 

endospore when it detects high levels of oxygen in the decomposed body [21].  The 

endosporium is a hard shell that protects B. anthracis DNA via a dehydration mechanism 

that reduces the DNA volume by up to 20% [42], [43].  This chemical change allows the 

endospore to remain inactive for more than 40 years [44].  The hardiness of this agent 

makes it the choice bioweapon for poor countries and terrorist organizations.   

B. anthracis invades the human body via three routes; cutaneous, gastrointestinal 

and inhalation[45].  Cutaneous anthrax results when B. anthracis enters through a cut and 

festers until it destroys enough tissue to get into the blood stream.  This form can cause 

septicemia with a 20% mortality rate for those untreated and a 1% mortality rate for those 

treated[28].  Gastrointestinal anthrax results when B. anthracis enters the body by eating 

infected meat and has a mortality rate as high as 50%[28].  Inhalation anthrax occurs 

when spores smaller than 3.0 µm in diameter are inhaled.  It has a 45% mortality rate 

when treated with antibiotics.  Untreated, it has a mortality rate between 80% and 100%.  

The 1979 Sverdlovsk Incident in Russia resulted in civilians infected via inhalation that 

resulted in 85% casualties[28].  The onset of inhalation anthrax is between one and six 

days.  The initial symptoms mimic influenza and may cause medical staff to misdiagnose 

the patient.  Two to four days later more severe signs occur with general malaise, 

exhaustion, tachycardia, cyanosis, and lethal shock followed by death[28].   

2.2.2 Structure  

B. anthracis is a Gram-positive, rod-shaped bacterium, approximately 1 µm in 

diameter and 3-5 µm in length.  It has a 25-50 nm thick peptidoglycan shell composed of 
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murein, teichoic and lipoteichoic acid that surround the plasma membrane [46].  The 

surface sites on B. anthracis spores have unique molecular signatures that can be 

exploited and provide a way to capture it via an aptamer [16].  

2.3 Aptamers, Chemical Linkers, and Fluorophores 

Aptamers are sequences of oligonucleotides, usually less than 50 base pairs in 

length, that have high affinity and selectivity toward complimentary DNA sequences or 

proteins based on their structural composition [47].  The aptamer sequence can target 

complimentary DNA.  Capture aptamers can be used to identify bacteria by binding to 

surface proteins or carbohydrates on the cell membrane.  They can be built via the 

systematic evolution of ligands by exponential enrichment (SELEX) process one 

nucleotide sequence at a time [48].  Basic aptamer sequences can be generated with 

special modifications, such as aminated nucleobase sequences and fluorophores, for the 

construction of biosensors.   

    Aptamers can be thought of as lock and key or hand in glove mechanisms that 

make them ideal biological sensors.  If a surface molecule associated with the agent 

matches the aptamer structure, hydrogen, van der Waals, and Coulombic forces take over 

and cause the aptamer to bind to it.  This binding event changes the aptamer structure and 

can serve as a basis for detection. 

2.3.1 Aptamers 

Aptamers were discovered as a form of ribonucleic acid (RNA) by the Szostak 

and Goldman Laboratories in the early 1990s [49].  RNA is similar to DNA in base pair 

construction except that the uracil nucleobase is switched out for the thymine nucleobase.  
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Aptamers have many different definitions in academia.  The term aptamer in this paper 

refers to single strand DNA.    

A single nucleotide unit of DNA is composed of a phosphate, a deoxyribose 

(pentose sugar) and a nucleoside base.  The phosphate backbone has covalent bonds and 

consists of phosphodiester units attached to the 5’ and 3’ (read 5 prime and 3 prime) 

carbon hydroxyl groups of the deoxyribose sugar unit.  The nucleoside base consists of 

one of four units, adenine (A), thymine (T), cytosine (C) or guanine (G) attached by a 

nitrogen molecule to the 1’ carbon on the deoxyribose sugar.  The nucleoside base, the 

dexyribose sugar, and the phosphodiester backbone result in a nucleotide unit that 

interacts with other complimentary nucleotide units via hydrogen bonds.  Complimentary 

interactions occur between the double-ring pyramidine nucleoside bases (A and G) and 

the single ring pyrimidine nucleoside bases (T and C).  These interactions are present in 

Watson-Crick pairs and that compose the structural basis for the physical properties of 

DNA in the majority of single cell and multicellular organisms.   

Watson-Crick pairs form when the two hydrogen bonds on adenine and thymine 

(A-T) are opposite each other and three hydrogen bonds on cytosine and guanine (C-G) 

are opposite each other[50].  The bond pairs form naturally in a 5’ to 3’ direction to allow 

enzymes easier access to the ATP used in replication.  DNA can be considered a 

negatively charged molecule due to the oxygen molecules attached to the phosphate 

backbone.  The structural differences between the pyramidine-purine (AT/CG) 

interactions and the hydrogen bonds can generate secondary, tertiary, and quaternary 
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DNA structures [51]  that form A, B and Z DNA whose structural characteristics are in 

Table 2. 

Table 2:  DNA Forms.  Data from [47]. 
 A-Form B-Form Z-Form 

Helical Sense Right Handed Right Handed Left Handed 
Diameter (x10-10 m) 26 20 18 
Base pairs per helical turn 11 10.5 12 
Helix rise per base pair (x10-10 m) 2.6 3.4 3.7 
Base tilt to normal to the helix axis (°) 20 6 7 

 

Small molecule DNA recognition has been used to exploit the minor and major 

grooves of A, B and Z DNA structures via intercalation (the ability of a small molecule 

or protein to fit into the major groove of the DNA) [47].  Extensive research has shown 

ssDNA can recognize double stranded DNA to form a triplex DNA structure at room 

temperatures at various pH levels [50].  Triplex stability increases as a function of base 

pair length and sequence repeats [50] .     

Wu reported ssDNA binds to graphene surfaces via π-π bonds and unbinds from 

the graphene surface when a complimentary DNA sequence is recognized [52].  This is 

important because an electrical signal can be used to interrogate the ssDNA aptamer 

while it is bound to the graphene surface.  Contact with a cDNA aptamer will cause the 

ssDNA aptamer to bind to the cDNA and change the surface electrical properties of the 

graphene resulting in a trigger event [19], [20].     

The electrical conductivity of DNA has been a contentious issue within the 

scientific community.  A review by Endres shows the conflicting nature of DNA 

conducting abilities as it can act as an insulator, a wide-bandgap semiconductor, an 
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ohmic conductor and a metal at room temperature [53] and in some cases, it acts like a p-

type semiconductor [54].     

The knowledge of the conductivity state of the ssDNA aptamer on graphene can 

be measured before the sensor interacts with target DNA aptamers.  This can form the 

basis for a sensor element.  The interaction with complimentary target DNA and 

noncomplimentary target DNA can help determine how the ssDNA sensor element 

should react when it interfaces with biological agents.  

The B. anthracis aptamer used in this research was derived from Fan’s work on 

DNA capture elements used to detect Bacillus anthracis and Francisella tularensis [16].  

The original 80 base pair sequence was shortened by 3 base pairs and modified on the 5’ 

and 3’ ends to support fluorophore and amine additions for test and attachment purposes.  

The B. anthracis aptamer, control aptamer and target aptamer sequences are listed in 

Table 3.  The red, italicized letters indicate the aptamer recognition sequence associated 

with the Sterne strain of B. anthracis.  The black letters indicate capture sequence 

elements added to the original aptamer recognition sequences to help bind to cDNA in a 

fluid medium.  The aminated adenine on the 5’ end of the ssDNA 22bp and the aminated 

guanine on the 3’ end of the ssDNA 77bp represent amine modifications on the 6’ carbon 

hydroxyl of the adenine nucleobase and the 3’ carbon hydroxyl of the guanine nucleobase 

respectively.  These modifications allow the ssDNA to attach to the NHS (succinmidyl 

ester) on the end of the PBASE molecule at room temperature (303 K).  The PBASE 

attachment binds the aminated portion of the aptamer to the graphene.  The ssDNA binds 

to the graphene based on the π- π bonds as discussed earlier and waits until a cDNA 



 

 

21 

 

 

molecule is in range.  When the ssDNA recognizes cDNA, the portion that is not 

attached to the graphene via the PBASE molecule unbinds from the graphene and binds 

to the cDNA.  If the ssDNA was not attached to the graphene, it would bind onto the 

cDNA and float off the sensor.  This event forces a conduction change on the graphene 

surface that produces a measureable electrical signal.  The aptamers in Table 3 have 

unique characteristics that can influence the measureable electrical signal.   

The cDNA 77bp and 39bp have Texas-Red fluorophores attached to the 5’ carbon 

hydroxyl that allows for the detection of a conformational binding event.  The 

fluorophores are of the same length order of magnitude as the DNA strands they 

functionalize.     

The ssDNA22bp represents the control aptamer and was used to test the original 

concept.  Part of the ssDNA22bp strand consists of a 10 base pair adenine sequence that 

may be able to form triple helix when brought in contact with enough other thymine 

nucleobases.   

The cDNA22bp is one of the target aptamers to determine how well the 

ssDNA77bp and ssDNA22bp aptamers respond.  The thiol modification on the 3’ end of 

the cDNA22bp represent a sulfur modification on the 3’ carbon of the thymine 

nucleobase that allows for the attachment of either gold or metal particle attachment.  A 

thiol compound has an R-S-H structure, where the R is any group except H, S is sulfur 

and H is hydrogen [55].  Thiolates derive from thiol compounds in such a way that a 

metal atom replaces the hydrogen attached to the sulfur.   
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The 18bp degenerate DNA sequence is a random sequence used to determine the 

22bp and 77bp aptamer response to random DNA chains. 

 

Table 3:  Aptamer Sequences.   
Aptamer Sequences 
DNA Identifiers Sequences with modifications (shown 5’ to 3’) 
ssDNA (77bp)  ACCCCTGCATCCTTTGCTGGAGAGGAATGTATAAGGATGTTCCGG

GCGTGTGGGTAAGTCAGTCTAGAGGGCCCCAG-NH2 
cDNA (77bp) (Texas-Red)- 

TGGGGACGTAGGAAACGACCTCTCCTTACATATTCCTACAAGGCC
CGCACACCCATTCAGTCAGATCTCCCGGGGTC 

cDNA (39bp) (Texas-Red)- 
TGGGGACGTAGGAAACGACCTCTCCTTACATATTCCTAC 

ssDNA (22bp) 
 

(5AmMC6)-AAAAAAAAAAGAGGGATTGTTA 

cDNA (22bp) TAACAATAATCCCTCAAAAAAAAAA-(3ThioMC3-D) 
Dg_ssDNA(18bp)* VAWRTCCATYTGCCARTT 
* V = (A, C, or G); W = (A or T); R= (A or G); Y= (C or T) [47] 

 
 

The ssDNA77bp and cDNA77bp are the most likely to form secondary structures 

based on the manufacturer’s statements and the OligoAnalyzer 3.1Toolkit at 

IDTDNA.com[56].  The OligoAnalyzer was used to notionally determine the binding 

characteristics that could be expected for the 77bp aptamer sequence.  It is important to 

note that this sequence has been modeled using a 1.1nM concentration with a 1 mM Mg2+ 

(magnesium ion) salt concentration.  Positive ions in solution tend to bond to the oxygen 

in the phosphodiester backbone and cause the DNA to “open” up or stay “open” at the 

right temperature.   

The most probable 77bp aptamer molecular configuration had a Gibbs free energy 

of -6.4 kcal/mole whereas the next most likely configuration had a Gibbs free energy of -

6.0 kcal/mole.  Remember a negative Gibbs free energy indicates a spontaneous reaction, 



 

 

23 

 

 

while a positive Gibbs free energy indicates a non-spontaneous reaction.  This means first 

structure was more likely to form under ambient conditions than the second structure.  

This is unfortunate because the second structure had larger linear recognition region 

between the 20 to 60 base pair sequence.   

The ssDNA 22bp aptamer was put through a similar analysis with the 

OligoAnalyzer Toolkit.  The most likely configuration for the 22bp aptamer would be a 

straight chain due to the melting or denaturing temperature of Tm = -330 °C and the 

Gibbs free energy being positive which requires energy to be put into the system to hold 

it at that particular configuration.  The ssDNA22bp aptamer is likely to be in a chain-like 

configuration approximately 7 nm maximum length. 

2.3.2 Chemical Linker - PBASE 

The 1-{[4-(1-Pyrenyl)butanoyl]oxy}-2,5-pyrrolidinedione, or 1-pyrenebutanoic 

acid, succinimidyl ester (PBASE) serves as a noncovalent bridge between the graphene 

and the ssDNA.  The aminated ssDNA attaches to the succinimidyl ester group (NC4O2) 

via an amine reaction at ambient temperature (303K) and pressure (0.987 atmosphere).  

The succinimidyl ester on the “tail” serves as the attachment point for aminated ssDNA 

ends, while the four benzene ring structures on the “bottom” of the PBASE molecule 

anchor to the CVD graphene.  The PBASE chemical linker is added to the graphene in a 

N,N-dimethylformamide (DMF) solution to promote bonding characteristics associated 

with the π- π bonds.  The PBASE disperses randomly on the graphene surface and orients 

itself appropriately.  Visual representations of PBASE and DMF can be found at 

Chemspider.com under ID numbers:  115656 and 5993, respectively [57],[58].    
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2.3.3 Fluorophores 

Fluorophores are molecular structures with special electronic orbital properties 

that absorb in ultraviolet light and emit visible light approximately 10-8 seconds after the 

absorption event [59].  Fluorophores can be attached to just about any aptamer that can be 

designed.  However, the attachment chemistry and overall function of the fluorophore 

must be taken into account to determine the optimum functional environment for the 

fluorophore [60].  The DMF protocol used to attach the PBASE to the graphene was 

incompatible with many of the available fluorophores.  Texas-Red was the only 

fluorophore that was soluble in DMF and was recommended for use with the PBASE 

modification to graphene due to the limited protrusions of sulfur and oxygen from the 

base [60].  Fluorophores can be matched with materials that quench emission until 

specific conditions are met.  Graphene is a natural fluorophore quencher with the ability 

to quench 70% of a fluorescent signal within 10 nm of the graphene surface and 50% of a 

fluorescent signal within 24 nanometers of the graphene surface  of a 6-

carboxylfluorescein probe [61].  This evidence, while compelling for the 6-

carboxylfluorescein, does not necessarily mean that the CVD graphene will quench the 

Texas-Red fluorophore.  The fluorophore was a secondary check to determine if the 77bp 

target aptamers would bind to the ssDNA 77bp aptamer on the sensor surface.  The 6-

carboxylfluorescein excites at 492nm and emits at 517nm (greenish light) whereas Texas-

Red excites at 583nm and emits at 603nm (red-orange).  A visual representation of 

Texas-Red can be found at Chemspider.com under ID number:  398742 [62]. 
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2.4 Graphene 

Graphene per Kochman is “Exactly one layer of polycyclic aromatic, hydrocarbon 

network with all carbon atoms hexagonally arranged in a planar condensed ring system.  

It has a metallic character and consists solely of carbon and hydrogen” [63].  The 

definition of graphene is important as there are at least 21 different acronyms in the 

current literature that describe the same material [63]. Single-layer, clean, suspended 

graphene has a reported electron carrier mobility of 200,000 cm2 V-1s-1 whereas kinked 

graphene has demonstrated an electron carrier mobility between 2000 to 15000 cm2 V-1s-1 

[64].  Compared to Au, Ag, and Cu, this makes graphene potentially one of the fastest, if 

not lightest conductors on Earth.  Graphene also has a tendency to bond with other 

organic compounds due to the pericyclic bonds emanating perpendicularly from the 

hexagonal plane.  The affinity for other organic molecules makes graphene a good point 

to start in the exploration of biological and biologically related systems.   

2.4.1 Graphene Structure 

Graphene consists of one layer of carbon bonded to carbon in a flat hexagonal 

arrangement with an accepted height of 0.34 nm [65].  The hexagonal carbon 

arrangement forces the carbon π bonds to equilibrate above and below the plane and 

create a pseudo-bandgap structure that allows the electrons to move at near relativistic 

speeds through the six distinct points where the k-space vectors touch.  Kittel provides a 

good explanation of the solid state physics background needed to generate and really 

understand k-space vectors[66].  Suffice to say all the semiconductors used today have 

well defined band gaps that allow photons (light vibrations) and phonons (elastic 
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vibrations) to jump from the valence band to the conduction band.  The conduction and 

valence bands are the result of the crystal structure and are usually well defined and 

smooth for three dimensional structures.  Graphene’s two dimensional in nature puts a 

different twist on the energy band structure forcing the valence and conduction bands 

down to 6 distinct points with the energy described by Equation 1 [65]. 
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Where:  W = Energy (J) 

  γ0 = the nearest neighbor overlap 

  a = the in plane lattice constant (nm) 

  kx = wave vector x-direction (m-1) 

  ky = wave vector y-direction (m-1) 

The plus and minus signs represent the carbon-carbon double bonds, more 

commonly known as π bonds, in this case π and π*.  The π bond represents the lowest 

unoccupied molecular orbital (LUMO) whereas the π* represents the highest unoccupied 

molecular orbital (HOMO).  The LUMOs are where most of the bonding takes place as is 

a lower energy state.  The HOMOs are where limited bonding takes place as it is a higher 

energy state and requires substantial energy to sustain.  The HOMOs and LUMOs result 

in the corners of the two dimensional Brillioun zone that touch each other at T = 0 K and 

contribute to graphene functioning as a gapless semiconductor [65].  There are multiple 

books written on graphene properties and models for very tight tolerance GFETs 

[65],[67],[68].  For this research purpose, the interest in graphene is constrained to its 
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electron transport properties, ssDNA binding properties, and simple production.  The 

CVD copper growth method was used to grow the graphene for transfer via the thermal 

tape method as outlined in Appendix B.1.  The thermal tape allowed the placement of 

graphene on the sensor in an expeditious fashion.    

2.4.2 Bonds 

Graphene coated surfaces have been shown to interact with ssDNA, DNA and 

fluorophores [61].  This is due to the orientation of the p-orbitals above and below the 

hexagonal plane of the carbon atoms.  Figure 2 represents the two dimensional energy 

band gap perpendicular to the graphene plane and shows the directions in the Brillouin 

zone.   

 

Figure 2:  Energy bands for graphene structure in blue represented in k-space.  The 
hexagonal shape represents the lattice structure for graphene.  Data from Figure 1.1 in 
[67]. 

 

The lowest unoccupied molecular orbital π bonds noncovalently anchor PBASE, 

ssDNA and cDNA to graphene.  This model is useful because it shows how ssDNA 

aptamers form π- π bonds on graphene and releases upon recognition of cDNA.  Sanchez 

posits the binding occurs due to van der Waals like forces between ssDNA and graphene 
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oxide [69].  This assumption is elucidated by Song, Cuniberti, Sanvito and Fang that 

show the mechanical and electrical interactions between graphene nanoribbons versus 

adenine, thymine, cytosine and guanine nucleobases.  They note that a single adenine 

nucleobase is undetectable on graphene due to a lack of oxygen atoms whereas the 

oxygen on the thymine, guanine and cytosine nucleobases contributes to electrically 

distinguishable absorption characteristic above 0.6V[70].   

2.5 Sensor Base/Substrate 

A substrate is something that the graphene attaches to for structural stability.  The 

substrate can be any material that will allow graphene to stay structurally sound.  This 

research explored silicon carbide and arsenic doped silicon wafer with thermal oxide on 

one side to determine the best surface layer that would keep graphene stable.   

2.5.1 Structure 

Silicon carbide (SiC) wafers and silicon (Si) wafers with thermal oxide layers 

were explored as potential substrates for the biosensor base.  The SiC substrate was 

initially selected as the sensor base due to the ability to be chemically polished to a 

surface roughness of less than 0.5 nm [71], access to surface carbon bonds [72] and ease 

of functionalization via surface carbon bonds[73].  The thought being a smooth surface 

would allow for better current flow due to less interference.  The SiC crystal structure 

expresses multiple atomic lattice arrangements (or polytypes) that can be used as bases to 

construct surfaces with minimal variations across a plane.  Out of the 215 identified 

polytypes [73], the 4H and 6H were considered for exploration as the 4H and 6H π- π 

bond structures were seen as the most optimal for PBASE bond stabilization.  The 6H 
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variant was expected to be superior due to the hexagonal crystal structures ability to near 

lattice match the hexagonal base of PBASE.  Unfortunately, only 4H SiC wafers were 

available.  The untreated 4H SiC sample had a resistance of 8.9 GΩ.  The resistance of 

the sample reduced to 19.7 kΩ after the graphene transfer from thermal tape.  While it 

was an impressive resistance reduction, the average price of a single 4H-SiC, 2-inch 

diameter wafer was between $300.00 and $1000.00.  The 6H variants were even more 

expensive [71].  The use of the SiC sensor substrate base was shelved until more funds 

and a better understanding of the aptamer functionalized graphene layer interaction was 

available.   

Silicon wafers with thermal oxide coats were explored as a next step.  The 

available silicon wafers had a 100 mm diameter, were n-doped with arsenic, had a (100) 

orientation, a resistivity of 0.002-0.005 Ω-cm, a thickness of 500-550 µm and a 1 µm 

thermal oxide on top.  These properties and the ability to generate 6 circuits per wafer, at 

$100.00 for 25 wafers, was much more useful on a limited budget.  The thermal oxide 

layer provided sufficient insulation from Si and allowed for easy placement and quick 

functionalization of the graphene surface.  This resulted in the Au-Cr probe configuration 

used in multiple biosensors designs [19], [20], [74], [75].  

2.5.2 Chemical Bonds 

The 1 µm thermal oxide layer on the silicon wafer provides insulation for the 

circuit.  Thermal oxide layers form smooth surfaces that allow graphene to be exfoliated 

in a relatively flat manner and help PBASE functionalization once it is introduced onto 

the sensor surface.  Figure 3 shows a side view of the functionalized area that constrains 
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the sensor.  The first metallic layer consists of chromium 30 nm high.  Chromium serves 

to anchor gold to oxide layers.  The second metallic layer consisted of gold 70 nm high.   

 

 
Figure 3:  Circuit cross section.  The graphene layer 
denoted in black is approximately 0.34nm to 10nm high.  
The ssDNA22bp aptamer is approximately 7nm long 
when attached to the PBASE.  The ssDNA77bp aptamer 
is approximately 10 to 27 nm long depending on the 
configuration it is in when it attaches to the PBASE. 

 

2.6 Sensor Design 

Sensors have three elements: an input, a transducer and an output.  This particular 

sensor is a label-free DNA biosensor that could be analyzed with metal-oxide 

semiconductor field effect transistor (MOSFET) equations once the design becomes more 

standardized.    

2.6.1 GFET Sensing Principles 

The graphene FET biosensor physical sensing principles are analogous to the 

sensing principles associated with metal-oxide semiconductor field effect transistors 

(MOSFET).  A simple view of a MOSFET consists of a source voltage, drain voltage and 
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gate voltage.  Figure 4 shows the input source voltage (VS), the output drain voltage (VD) 

and the graphene-PBASE-ssDNA sensor gate voltage (VG).  Note that the gate voltage is 

considered in an “off” setting when the aptamer is not interacting with the target DNA 

and in an “on” setting when aptamer is interacting with the target DNA.   

 

 
Figure 4:  MOSFET Representation of GFET circuit with ssDNA aptamer. 

 

  If an agent with the correct target DNA sequence gets close enough to the 

ssDNA aptamer, the hydrogen bonds and van der Waals forces recognize each other via 

structural differences and attach the ssDNA aptamer to the cDNA.  This binding event 

changes the state of the aptamer which interacts with the graphene and ultimately 

changes the sensor response [76].  Detection events are due to aptamers binding to their 

complimentary sequences and interfacing with the graphene surface.  The detection event 

can be measured in two ways.  The first way is to monitor a change in current across the 

aptamer functionalized graphene surface.  The second way is to attach fluorophores to the 

end of a complimentary sequence and interrogate them after the binding is finished.   

The challenge of detecting agents with aptamers requires an electrochemical 

understanding of the aptamer, the interaction of the aptamer and target analyte, the 
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reaction environment, and the optimal aptamer density needed to detect an agent in order 

to send a positive, unambiguous capture signal.  These challenges are not unique to any 

particular biological sensor system, they have been stated here to give the reader an 

appreciation for the little things that go into a sensor system.   

The biosensor is constructed from graphene, a 1-pyrrolidinedione succinimidyl 

ester and a single strand DNA (ssDNA).  Detection is accomplished by a change in 

current due to the coupling of the ssDNA to its complimentary DNA (cDNA) sequence.  

The current change is detected via a 4200 SCS Keithley oscilloscope and the data is post 

processed through MATLAB to normalize the data to percent resistance.   

This particular sensor uses conductivity changes from conformational binding 

events interfering with the graphene surface.  These principles serve as the foundation of 

the sensors and derive from first principles of physics.  Resistance can be determined 

from the resistivity multiplied by the length of the path the current “flow” divided by the 

area the current flows through and is given by:  

A
lR *ρ=  (Eq. 2) 

Where:  R = resistance (Ω) 

  l = length of material (m) 

  A = area of resistance (m2) 

  ρ = resistivity (Ωm) 

Resistance can also be experimentally determined and derived from Kirchoff’s 

voltage law, given by:   
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I
VR =   (Eq. 3) 

Where:  R = resistance (Ω) 

  V = voltage (V) 

  I = current (A) 

The conductance is just the inverse of the resistance or the rise of the current over 

the run of the voltage as given by:   

V
I

R
G ==

1  (Eq. 4) 

Where:  G = conductance (S or Ω-1 or mhos) 

  R = resistance (Ω)   

Conductance measurements are very useful as the change in slope of the I-V 

curve is directly proportional to the conductance of the material under study.  The 

knowledge of the properties of deionized water (ρ = 18.18 MΩ-cm, pH = 7.0 at T = 25 

°C) [77] can help determine acceptable values for circuit resistance.   

2.6.2 Mathematical Models and Biosensor Standards 

First principle models, previous sensor detection limits, and stated DARPA 

requirements were used estimate the amount of graphene, PBASE, and ssDNA needed to 

detect an average of 0.3 to 105 B. anthracis particles per liter of solution [25].  The spread 

of PBASE over the graphene, and the ssDNA and cDNA concentrations on the sensor 

platform were random and no attempt was made to characterize the actual pattern.  The 

silicon wafers used for the sensor substrate were cut from standard wafers down to 

rectangles of size 29mm by 22.5mm.  These dimensions allow the sensor base to be 
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inserted into the microfluidics test chamber.  The silicon dioxide on the silicon wafer is 1 

µm in height.  It can be assumed that the surface oxide is relatively flat.   

The number of PBASE molecules that attach to the graphene substrate can be 

estimated with an approximate PBASE model and knowledge of the graphene area.   The 

area per PBASE molecule can be calculated under the assumption that the four benzene 

rings on the base are stiff, the average carbon-carbon bond length is 141 pm [78] and that 

succinimidyl ester tail is approximately the same length as the PBASE as shown in 

Figure 5.   

 
Figure 5:  Estimated PBASE dimensions.   

 

The length of the tail and one-half the length of the base can be used as the radius for an 

area estimate for a PBASE molecule.  The rough estimate of a PBASE molecular area is 

approximately 5.866x10-18 m2.  Given a graphene area of 3.0x10-7 m2 (0.6mm by 0.5mm) 

divided by the PBASE molecular area estimate of 5.866x10-18 m2 gives 5.11 x1010 

available PBASE sites.  A 5 µL volume of 10mM PBASE concentration gives 

approximately 3.011x1016 PBASE molecules.  These calculations indicate PBASE would 
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cover an atomically flat graphene surface.  However, in reality, the surface oxide will be 

much rougher and cause graphene to take on shapes that undulate and kink in certain 

regions.  These surface features increase the number of PBASE sites and PBASE 

molecules needed to coat the graphene surface.   

A single rod shaped B. anthracis can be approximated as a cylinder 3.0 µm long 

with a 1.0 µm diameter.  Since the bacterium shape shrinks by 20% when it undergoes 

sporulation, the spores are estimated to be spherical and 2.0 µm in diameter.  The 

estimated detection concentration values for B. anthracis are stated between 0.3 and 

10x105 particles per Liter[25].  These values are more practical stated as 1 particle per 3 

Liters to 11,112 particles per Liter.       

The key DARPA sensor metrics [25] of sensitivity, probability of detection, false 

positive rate and response time are discussed below.  Additional attributes are unit cost, 

operation cost, maintenance (mean time between maintenance), reliability (mean time 

between failure), size, weight and power consumption.  Sensitivity per DARPA, is 

defined as: 

V
nmDARPA =  (Eq.  5) 

Where:  m = sensitivity (particles/liter or mg/m3) 

  n = number of particles or mass (particles or mg) 

  V = unit air volume (liters or cubic meters)   
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Notice the volume definition in sensitivity is measured in units of air volume.  This is 

slightly different than the standard chemistry concentration of molarity that deals in 

moles per liter of liquid solution.   

The probability of detection was defined by the following equation: 

∫
∞ −

−

> =
T

x

TC dxeP 2

2)(

*
*
2 σ

µ

πσ
 (Eq.  6) 

Where:  PC>T = probability of agent concentration  

exceeding sensor threshold 

  T = detection threshold to detect 

  x = random variable  

  µ = mean sensor detection 

  σ = standard deviation sensor detection 

Ivnitski also states that biological sensors should be able to detect the agent at 

threshold concentrations between 5 and 10 minutes [11].   

The false positive rate in DARPA’s study is classified but a break-even false 

positive rate was defined as a linear function with the break-even false positive rate per 

operation versus the probability of attack.  The y and x axis ranging from 0 to high.   

The response time shown in Figure 6 is a function of the agent release time 

coupled with the agent arrival at sensor.  The sensor response time is defined as the time 

it takes the sensor to detect the agent after it arrived at the sensor.  Once the sensor 

detects the agent there is the protection response time before the agent arrives at the 

troops.  The sensor response is highly situation and mission dependent [25].   
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Figure 6:  Biological Warning Response Time.  This is a linear 
representation of the timeline associated with agent release to agent arrival 
at the troops.  Data from [25]. 

   

There was one important point to note in the DARPA recommendations, 

“Sensitivity should always be stated with the probability of detection, the false positive 

rate and the response time.”  The figures of merit that clinicians and chemists regularly 

identify with are sensitivity, selectivity and limit of detection from [79] and [80] in 

equations 7, 8 and 9:   

c
Rm
∆
∆

=  (Eq. 7) 

Where:  m = calibration sensitivity 

  R = response (output) 

  c = concentration (input) 

 

This particular measure can be useful as the response of the electrical signal is 

based on the concentration of the analyte (target aptamer in this case) as it flows over and 

interacts with the sensor.  This measurement still does not bridge the gap between the 
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stated DARPA sensitivity simply because it measures concentration as a function of 

aqueous fluid medium and not air.  The selectivity is given by:  

 

reference

analyte

m
m

S =  (Eq. 8) 

Where:  S = selectivity 

  manalyte = slope of the analyte concentration 

  mreference = slope of reference concentration 

 

This measure could be useful because the slope of the analyte and the slope of the 

reference concentrations could be determined from the response data.   

The limit of detection is given by:   

m
skDL b*

=   (Eq. 9) 

Where:  DL = detection limit 

  k = confidence factor (k=2, 92.8%; k=3, 98.3%) 

  sb = standard deviation of the blank 

  m = calibration sensitivity 

 

Repeatability measures the ability to obtain similar answers under similar 

analytical conditions, whereas reproducibility measures the ability to obtain similar 

results under varying analytical conditions [80].  These differences may seem minor but 
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they are important because they determine sensor capabilities outside of a laboratory 

environment.   

The differences between these sets of measurements outlines the terminology 

used between academia and the defense industry are potentially at odds, confusing and 

may have helped undermine the ability for the biodefense industry to take hold or 

accurately tell its customers what they purchased.  The mathematical description of agent 

concentration to agent dosage consists of eight independent variables that need further 

refinement before use in a laboratory or field environment.     

 

III. Methodology 

This chapter describes the methods used to acquire the signals from the DNA 

used in this study.  The water was filtered via a Millipore system with two 0.22 µm filters 

to make it ultrapure deionized water (DI).  The laboratory temperature was 303K.  The 

general outline is given below with each section devoted to the necessary setup issues.  

The first section focuses on the microfluidic chamber setup and the process used to test 

target DNA in a dynamic aqueous environment.  The second section discusses the Raman 

laser spectrometer setup and the process used to determine the indirect fluorescent 

detection indicative of target DNA binding to the functionalized surface ssDNA.  The 

third section discusses the static drop test setup and the processes used on target DNA 

and spores for the static drop test.  The fourth section explores atomic force microscopy 

to show the target DNA and surface immobilized DNA and spores binding on the 

surface.   
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3.1 Sensor Development and Construction 

Two circuit designs were constructed to test ssDNA to cDNA conformational 

binding in dynamic and static aqueous environments at specific concentrations via 

changes in I-V curve slope and magnitude.  The first sensor type was a two terminal 

variant.  The second sensor type was a three terminal variant.  Both sensor types were 

tested as two terminal variants due to equipment issues.  The sensor base, an n-type 

silicon wafer with a 100 µm thermally grown oxide finish, was used as a cheap, flat 

surface to test the sensor on.  Graphene was grown via the method outlined in Appendix 

B.1.  The transfer to the silicon dioxide wafer was accomplished by placing the thermal 

tape on the silicon wafer and putting the wafer onto a hot plate heated to 125 °C.  The 

thermal tape turned whitish and peeled off the silicon wafer surface after 10 to 20 

seconds.  Tweezers were used to carefully pull the tape off the silicon wafer.  The 

graphene left behind a purple tinge on the surface of the silicon oxide wafer that can be 

very hard to see if viewed straight on.  The Manchester group determined a way to 

optically estimate the thickness of graphene on a silicon substrate [81], [82].  Fresnel 

equations can be used to determine the thickness of the graphene layers by equating the 

graphene thickness d = k*0.34, where: d is the graphene thickness in meters and k is the 

individual graphene layer.  Alternatively, the observed contrast can be quantified by 

extracting the green component of the RGB colors from digital photographs.  The 

difference between the green contrast of the graphene and the green contrast of the 

substrate takes discrete values corresponding to k = 1, k = 2, k = 3 layers of 

graphene[68].   
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The graphene transfer can be detected with a digital camera and software with an 

inverse filter see Figure 7.  This method was an easier way to determine if the thermal 

tape had transferred its contents to the graphene surface.   

 
Figure 7:  Graphene (light white rectangle in the middle of the sensor) 
transferred from thermal tape in center of silicon wafer before masking.  
Taken with iPad Retina, 5 Megapixel camera, inverse filter applied from 
PicLab HD.   

 

After the graphene is placed on the silicon wafer, the resistance across the 

graphene sheet is checked with a digital multi-meter to ensure it is in place and can 

conduct.  The usefulness of the measure stems from the ability to tell if the graphene is in 

place.  The next step is to mask the circuit with a Scotch tape outline of the two or three 

terminal device.  The blank areas are where Au-Cr will be deposited on the thermal oxide 

surface (outlined in Appendix B).  After metallization the circuit is stripped of Scotch 
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tape and annealed in a furnace at 300 °C for 4.5 hours.  This allows the Au-Cr-SiO2 

layers and the Si wafer to relax system dislocations brought about by the initial 

construction process and burn off the adhesives associated with the thermal tape transfer 

of graphene and the Scotch tape patterning.  Once annealing is finished, the circuit is 

ready for functionalization by pyrene and ssDNA (see Appendix B.3 for recipe).  The 

finished circuit layout is shown in Figure 8. 

 

 
Figure 8:  Si-SiO2 base with Cr-Au patterned 
leads in a three terminal configuration with the 
graphene-ssDNA functionalized surface 
highlighted by the deionized H2O clinging to the 
surface.  The functionalized area measures 
0.5mm by 0.61mm.   

 

This process takes approximately one hour, after which time the graphene-

PBASE surface can be functionalized with an aminated ssDNA.  The aminated ssDNA 

attaches to the PBASE via the succinimidyl ester at standard temperature and pressure 

(303K, 0.987 atm) in a deionized H2O solution.  The reaction takes 18 hours to complete.  

The remaining polar amino acid groups on the ssDNA bind into the graphene and create a 

surface that can be used as a sensor platform.  This circuit is similar to a field effect 
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transistor circuit where a gate voltage is applied between a source and drain voltage in 

order to force an electric field deformation to allow the conduction of electrons.  This 

setup differs such that the gate field can be thought of as controlled by cDNA 

conformational binding to the ssDNA on the surface modified graphene.  A change in the 

overall circuit resistance occurs due to the molecular binding event of ssDNA and cDNA.   

Raman spectroscopy was used to verify each new surface layer.  There are a 

number of good references that explain Raman spectroscopic theory in detail[55].  It is a 

technique used to illuminate molecules at a specific coherent wavelength and detect the 

inelastic scatter of light waves from the illuminated molecules.  The inelastic scatter of 

light waves represents as a set of vibrational frequencies that allows for the compositional 

determination of sample elements over a wide range of frequencies.  The vibrational 

frequencies are a function of molecular mass and the bond strength of monoatomic or 

diatomic species.  Second order equations of motion give the following equation: 

 

( )
21

21

* mm
mmB +

=ν  (Eq. 10) 

Where:  ν = frequency (Hz) 

  B = Bond strength (N/m) 

  m1 = atom 1 with mass (kg) 

  m2 = atom 2 with mass (kg) 
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The vibrational frequency depends on the addition of mass to the sample and 

decreases as the sample mass increases.  This frequency-mass relationship conceptually 

describes the addition of PBASE, ssDNA and cDNA layers to the graphene base on the 

thermal oxide substrate.  This relationship extends to the energy-wavenumber 

relationship used by spectroscopic technologists to report their findings.  The frequency 

is inversely proportional to wavelength ν =c/λ, and when substituted into the energy-

frequency relationship gives:  

 

   )1/100(*~** mcmchE ν=   (Eq. 11) 

Where:  h = Planck constant (6.626x10-34 J*s) 

  c = speed of light (2.998x108 m/s) 

  λ = wavelength (m) 

  ν~ = wavenumber (cm-1) 

 

The wavenumber is directly proportional to the energy of the system.  This 

particular method illustrated the compositional changes to the circuit surface as each 

additional layer was added to the sensor.  Table 2 lists the Raman wavenumbers that are 

expected to be present each time a new layer is added.     
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Table 2:  Raman wavenumbers for circuit functionalization.  Data 
from 600 cm-1 to 4000cm-1 from [83]. 

Chemical Bonds Region of vibrational frequency/(cm-1) 
O – H 3730 – 3500 
O – H (association) 3520 – 3100 
N – H 3550 – 3420 
N – H (association)  3500 – 3100 
C6H6 1625 – 1575, 1520 – 1480  
C=O (esters) 1760 – 1720 
C=O (aldehydes) 1725 – 1715 
CC (aromatics) 1600, 1580, 1500, 1450, 1000 
n-alkanes 950-1000 
Si 520 

    
 The graphene G (1590 cm-1) and 2D (2690 cm-1) peak are clearly illustrated in 

Figure 9.  The silicon peak was not included due to its ability to saturate the Raman 

spectrometer and drowned out the rest of the spectra.   
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Figure 9:  Raman spectrum from 600cm-1 to 3200cm-1 for graphene on SiO2. 
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The initial Raman spectroscopy circuit tests were with the ssDNA 22bp that 

showed an increase in the overall peaks of the as layers were added to the circuit.  Figure 

10 shows the buildup of the graphene functionalized section of the circuit.  The laser 

spectrometer was checked with a silicon calibration unit that generated a standard peak at 

a 521 cm-1.  The spectrometer was calibrated each time to ensure proper elemental 

identification and to reduce the erroneous identification of specious elements.       
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Figure 10:  Graphene peak shift with added layers.  Raman spectroscopy used to 
show graphene peak shift for additional circuit layers.  Blue line indicates the 
vibrational spectra of graphene on the SiO2 layer.  Green line indicates a shift 
from 5 µL of PBASE at a 10.0 mM concentration to the graphene layer.  Red 
line represents a shift due to the addition of 10 µL of 50.0 µM ssDNA 22bp 
bound to the PBASE.  Note the wavenumber shifts left as more molecular layers 
are added to the graphene surface. 

 

Figure 11 shows the differences between a 22bp and 77bp functionalized circuit 

from a Raman standpoint.  The inVia was set to 100% laser intensity (200mW) with an 

exposure time of 10 seconds from 600 cm-1 to 3500 cm-1.  This was to ensure a clear 



 

 

47 

 

 

spectrum.  The differences between the curves from 1700 cm-1 to 3500 cm-1 show peak 

broadening and shifts to the left of the baseline.  These are indicators of heavier ssDNA 

chains attached to the graphene surface.   
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Figure 11:  Raman spectrum of 22bp and 77bp circuit comparison.  The ssDNA77bp in red 
shows a more intensity from the ssDNA fluorescence and broader peaks indicating more 
mass than the ssDNA22bp peaks shown in blue. 
 

Each time a new layer was added to a circuit, seven measurements were taken 

with the Kiethley 4200 SCS and Student-t distribution was used to determine a 

reasonable estimate for the circuit resistance.  Figure 12 below shows the resistance 

change as new layers were added to the circuit.  This test served as an initial check but 

did not help determine the resistance of the circuits when they were immersed in dynamic 

or static fluids as the introduction of fluids provided a surface path that changed the 

overall circuit resistance.   



 

 

48 

 

 

-1 -0.5 0 0.5 1

-2

-1

0

1

2
x 10-4

Voltage (V)

C
ur

re
nt

 (A
)

GFET
GFET+PBASE
GFET+PBASE+ssDNA

 
Figure 12:  I-V curve for added circuit layers.  Current versus voltage curve shows 
capacitance decrease with the addition graphene, PBASE, and ssDNA.  The 
PBASE had a 10mM concentration and a volume of 5 µL.  The blue line denotes 
naked graphene between Au-Cr contacts.  The red line denotes graphene plus 
PBASE between Au-Cr contacts.  The conductance changes between red and blue 
line are minimal due to π-π bonding between graphene and PBASE.  The green 
line denotes addition of aminated ssDNA to PBASE on the graphene surface.   

 

The current-voltage curve in Figure 12 shows that the conductivity decreases after 

each functionalization step.  This makes sense because each new layer consists of 

chemical entities that obstruct the original graphene electric field.  The PBASE addition 

to the decreases the circuit conductivity very little which makes sense because the 

PBASE molecules form π- π bonds with the graphene plane layers in a hexagonal 

fashion.  This setup should minimally interfere with the electron transport across the 

graphene surface.  However, the introduction of ssDNA to the GFET+PBASE surface 

decreases the conductivity substantially.  It has been experimentally shown that ssDNA 

binds to graphene via the benzene π-π bonds that protrude from the graphene surface[61].  
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The binding of negatively charged DNA molecules to its surface bound complement 

increases the impedance on n-type silicon samples and decreases the impedance on p-

type samples [84].   

Another method was used to regenerate the circuits after they failed from overuse.  

This method involved transferring graphene on thermal tape to the originally 

functionalized area between the Au-Cr contacts.  The transfer method worked and is 

verified with a multimeter.  The annealing process attached it firmly to the Au-Cr 

electrodes and the SiO2 surface.  However, this transfer process comes at a reduced 

sensitivity.  The sensors that underwent this process could previously detect tens of nM 

concentrations.  This process pushes the detection limit into the hundreds of nM range. 

3.2 Electrical Measurements via Microfluidics Chamber 

The Dolomite microfluidics chamber has high a pressure transparent polymer that 

allows researchers to view the sample while eight electrical probes collect data as the 

working fluid passes over it.  The electrical probes connect to the Keithley 4200 

Semiconductor Characterization System while the fluid tubes connect to the Flowmeter 

Syringe Pump and the Eppendorf vial see Figure 13 below. 
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Figure 13:  Equipment setup.  Dolomite sitting on probe station with the Eppendorf vial 
on the right hand side and the syringe pump on the table on the far left.  The Keithley 
4200-SCS is not in the picture.   

 

3.2.1 Electrical Measurements 

After the Keithley 4200 Semiconductor Characterization System was powered on 

the sensor was put into the Dolomite Resealable Unit (DRU) and contact between the 

electrical probes and sensor leads was verified.  This is accomplished visually and by the 

two terminal resistor function in the KiTE software.  The two terminal resistance function 

displays a two terminal device with the ability to modify the input and outputs for the 

circuit.  The input was set as a linear voltage sweep from -0.2V to 0.2V with a step size 

of 0.01V.  Once the sensor was secure in the Dolomite, tests were run to check the 

current-voltage (I-V) plot to determine if the circuit had good electrical connections.  

Suspicious connections were detected by electrical currents less than 10-12 A, circuit 

resistances more than 1.0M Ohms or real time I-V plot showed erratic jumping behavior 

by 3 magnitudes or more.  The circuit was adjusted until the I-V curve is linear.  Once the 
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I-V curve was straight, six more measurements were collected to determine if a 

statistically valid Student T mean distribution of the circuit resistance was needed to help 

characterize the circuit.   

After the connections were verified, the Dolomite inflow tube was inserted into a 

1.5mL Eppendorf vial and the Dolomite outflow tube was hooked up to the Flowmaster 

Syringe.  The Flowmaster Syringe had a maximum 12 mL fluid volume and was set to 

pump a fluid velocity of 20 uL/min.  A pipette of 1000uL DI was injected into the 

Eppendorf vial to provide an initial solution for the sensor to equilibrate.  After this was 

completed, the syringe pump was turned on to flow water through the tubes and across 

the microfluidics cell at a constant 20 uL/min.  Care was taken to minimize bubble 

introduction and formation within the inflow and outflow tubes.   

To verify laminar flow, the Reynolds Number was calculated using [85] equation 

12 which indicates laminar flow for Re < 10000 or turbulent flow for Re > 10000. 

 

µ
ρ**Re DV

=  (Eq. 12) 

Where:  Re = Reynolds number 

  V = fluid velocity (m/s) 

  D = pipe diameter (m) 

  ρ = mass density (kg/m3) 

  µ = dynamic viscosity (N*s/m2) 
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The assumptions of pure Millipore strained deionized water at 25 °C coupled with the 

information in Appendix A gives an approximate Reynolds number of 6 which is 

laminar.  This information helps characterize flow conditions under which 

complimentary binding occurs.  Nyugen identified and suggested Lliquid = 10 nm as an 

appropriate length scale at which to perform molecular simulations on a fluid [86].  This 

study assumed the flow was continuous and laminar based on the characteristic tube 

diameter and microfluidics chamber measurements in excess of the length scale 

recommendations.  A computational fluid dynamics simulation would be beneficial to 

characterize the events in the flow chamber.   

Once the DI was flowing through the microfluidics system in a smooth manner, 

the four terminal function was selected on the Keithley 4200-SCS with the drain voltage 

and source voltage set to SMU 2 and SMU3 respectively.  The driving input for the 

sensor was the source voltage set at 0.2V with a 0.1A compliance.  The sample size was 

set to 4000 and the sample rate was set to 1 sample per second.  The graphing function 

was opened to monitor sensor progress and the start button at the top was clicked to set 

the Keithley to start recording.  The sensor drain current reading took anywhere from 100 

to 1000 seconds to come to equilibrium.  If the sensor response was within a 2% 

envelope for 100 seconds, it was appropriate to inject the target DNA into the Eppendorf 

vial.  This vial served as a fluid injection point where the sample of interest would be 

dripped down the wall to minimize fluid mixing and prevent air bubbles from forming in 

the tube.     
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The target DNA injections were between 100 and 300 µL in volume.  Each 

sample took 120 seconds to traverse the inlet tube at 20 µL/min and another 30 seconds 

to flow over the functionalized sensor due to the geometry of the microfluidics chamber.  

The injection actions overlapped the DI water exiting the Eppendorf vial.  There was 

usually a 10 µL mixing of the target DNA concentration with the DI water remaining in 

the Eppendorf vial.  Each target DNA injection was tracked carefully as DI water had to 

be injected once the target DNA was within 10uL of the bottom of the vial to ensure air 

bubbles would not get into the tube and interfere with the microfluidics measurement.   

After 150 seconds passed from the injection point, the current was monitored to 

determine if the sensor detected the target DNA within the microfluidics chamber.  The 

area of the chamber is 22.3mm2 with a depth of 100um.  This volume was adequate to 

hold 300uL of target fluid at one time.  If the measured drain current did not climb above 

1% of the mean drain current response, it was deemed a failure and the next target DNA 

sequence was added.  The target DNA sequences and injection times are shown below.  

They match with the injection times associated with the responses in the results and 

analysis section.  Once the run finished, the KiTE analysis software was stopped to 

prevent damaging the Keithley 4200 SCS and the Syringe pump was stopped.   

After each experiment, the microfluidics chamber was opened and the circuit was 

removed and washed with DI water heated to 30 °C.  This wash step removed any bound 

DNA and reset the sensor for another test.      

The current versus time plots were captured with a Keithley 4200-Semiconductor 

Characterization System via SMU units attached to triaxial BNC connectors wired into a 
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Dolomite printed circuit board (PCB) on a resealable microfluidic chamber.  The 

Keithley 4200-SCS was set to the drain-gate-source mode to allow drain current versus 

time to be collected.  The sample buffer was set to 4000 and the sample rate was set for 2 

seconds.     

The Keithley 4200-SCS was set to the vgs-id mode that can determine the drain 

current given a particular source and gate voltage.  It records current as a function of time 

which is inevitably a function of the solution concentration flowed across the sensor.  The 

syringe pump in the picture generates a vacuum pressure on the solution and pulls it 

through the tubes attached to the Dolomite sensor.  The Dolomite PCB had eight 

electrical probes (four on each side) perpendicular to the fluid flow that allowed for the 

multichannel information capture.  The ssDNA and cDNA solutions were channeled from 

a 2mL cuvette in an 808.4 mm long, 0.8 mm inner diameter tube to a resealable sensor 

platform with a volume of 16.73mm3 (11.00 mm wide and 20.4 mm long with triangular 

inlet and outlet regions).  The target DNA solutions flowed through the chamber and 

interfaced with the functionalized sensor for approximately 100 to 300 seconds.  

Afterwards the solutions were flowed out of the chamber via a syringe pump at a constant 

flow rate of 20 uL/min.   Approximately 1mL of dH2O water was drawn across the 

sensor before exposing the sensor to three separate cDNA concentrations in 3 mL water.  

This data provided a point to compare this system to other sensors.  The initial data for 

the two terminal circuit shows a minimal decrease in current over time.  Preliminary 

results show the current at 10.8 µA going to 10.63 µA in dH2O and from 10.63 µA to 

10.49 µA under a range of concentrations of cDNA from 10-12 to 10-7 M.  The cDNA 
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sequence should force the ssDNA to unbind from the graphene surface and orient itself 

away from the graphene plane.  To test this theory, ssDNA sequences 22bp were 

aminated and used to functionalize the graphene surface on specific circuits to provide a 

baseline and help interpret the methods used and data collected.  The second ssDNA 

77bp with the Texas-Red fluorophore on the 5’ carbon serves as a test to see if the 

transduction element recognizes and attempts to bind it to the graphene surface.  The 

third DNA sequence was the cDNA 77bp with a 5’ Texas-Red fluorophore modification.  

The cDNA is the full complimentary sequence to the transduction element.  The fourth 

DNA sequence was a half complimentary sequence used to determine if and how the 

functionalized area would response to a “half” input.  The fifth DNA sequence, ssDNA 

22bp, was a test sequence used to evaluate sensor construction.  The sixth DNA sequence 

was the cDNA 22bp used to help test the ssDNA 22bp sequence and also was used 

against the ssDNA 77bp to attempt confuse the sensor.    

3.3 Raman Spectroscopy 

Raman spectroscopy was picked due to its ability to determine composition of 

thin film layers and the minimal setup required to gain data on the sample under test. 

3.3.1 Raman Procedure 

The Raman vibrational frequency measurements were taken with the Renishaw 

inVia Raman Microscope with a Diode-Pumped Solid State (Nd:YVO4), 532 nm Laser, 

Class IV operated at 200mW (100%).  The inVia uses the WIRE3 software package to 

control the laser beam, aperture, sample plate XYZ motion, lights, laser exposure, etc., in 

the sample illumination container.  Operation of this unit requires OD+6 goggles 
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specifically designed to block the 532 nm laser light.  The Wire3 software package was 

started and checked to ensure the laser aperture was closed before opening the 

illumination chamber.  System calibration was accomplished by focusing the smallest 

coherent laser onto the standard Renishaw silicon block and monitoring the vibrational 

frequencies for the expected 521 cm-1.  The calibration was repeated if the system was off 

by more than 2cm-1.  The calibration was performed each time a test sample was put into 

the chamber to ensure a reliable analysis.   

Once the in-Via was calibrated, the sample circuit was placed in the illumination 

chamber on a small conductive block.  The optics were set to 50X and adjusted to focus 

on the functionalized circuit area to ensure the laser was pointed at the right area.  The 

laser was checked again to make sure the beam was collimated for the best possible 

picture.  This involved turning the illumination chamber light and camera off while 

opening the laser aperture with a reduced power setting of 0.0001%.  The beam was 

focused to the smallest circular size recognizable on the monitor.     

Two types of measurement modes were performed for every circuit layer 

addition.  The spectral acquisition mode illuminated a section of the sample within the 

functionalized area.  The optical camera was used to ensure the laser was pointed at the 

correct region.  The spectral acquisition setup Range tab grating scan type was set to the 

extended option which allowed for a user definition of the spectrum range which was set 

from 600 to 4000 Raman shift/cm-1 for each measurement to block the Si signal and 

capture the rest of the frequencies of interest.  The confocality was set to standard.  The 

configuration laser name was set to 532 nm Edge in the Laser Name field.  The grating 
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name was set to 1800 l/mm (vis) and the detector name was set to the Master:  Renishaw 

CCD camera.  The Acquisition tab exposure time was set to 10/s, with the Accumulations 

set to 1, the Objective set to 50 and the Laser power % set to 100.  The range (600cm-1 to 

4000cm-1) excluded the detection of the Si vibrations due to their ability to saturate the 

detector and reduce the detectability of signals of interest from graphene, PBASE, 

ssDNA and ssDNA-cDNA binding.  Each spectral measurement was taken within the 

section between the Au-Cr electrodes see Figure 14.  The functionalized area on average 

was approximately 7.92x10-7 m2.   

 

 
Figure 14:  Graphene functionalized with ssDNA 77bp.  Optical shot 
taken at 50X between Au-Cr circuit connects in in-Via Renishaw 
laser spectrometer.   

 

Figure 15 shows the typical atomic composition of silicon, oxygen, and graphene 

in the functionalized area of the circuit.  The baseline generates the departure point for 

confirmation of the addition of PBASE, ssDNA and cDNA circuit layers. The 
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wavenumbers from 925 cm-1 to 998 cm-1 are trigonal ring breathing modes from mono 

and meta-substituted benzenes, the peak at 1350 cm-1 is the graphene D peak.  The peak 

at 1590 cm-1 is the graphene G peak.  The peak at 2690 cm-1 is the 2D peak from 

graphene.  The peak at 2900-2950 cm-1 is identified with n-alkanes (CH2 stretch).  The 

peaks at 3200-3300 cm-1 are primary amines (bonded antisymmetric stretch NH2) [87].  

The variation is due to experimental nature of the circuit construction.   
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Figure 15: Graphene functionalized with PBASE [10µM] and ssDNA 77bp [50 µM] on 
SiO2 layer.  

 

The second measurement function used was the map acquisition mode that takes 

sample data from a user-defined area.  The range and exposure times were kept the same 

as the spectral acquisition mode to provide equivalent data comparisons if necessary.  

The map acquisition mode on average collected 20 samples in a boxed region over a 20-
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30 minute period.  The region was selected at random within the functionalized area.  The 

data was saved to a text file for reconstruction and review in MATLAB. 

3.3.2 Raman Spectroscopy Measurements  

The data shows a relatively smooth surface based on the CVD grown and 

mechanically exfoliated graphene on the surface based on the ID/IG ratio of 1.8.  The Au 

and Cr portions do not show up on the Raman measurements because the laser 

illuminator was specifically aimed in the graphene functionalized regions of the circuit.  

The wavenumber values were in good agreement with other papers on the subject of 

Raman spectroscopy and graphene [88].  Ferrari and Basko[89] noted that the full width 

half maximum (FWHM) of the graphene G peak always increases with disorder.  This 

was noted a number of times and helped indirectly confirm certain molecules were on the 

functionalized circuit area.  Raman spectroscopy can also indirectly detect the 

fluorescence from DNA showing that the ssDNA and cDNA underwent complimentary 

binding see Figure 45, section 4.2.5. 

3.4 Static Fluid Test 

The electrical probe chamber was used to explore drop-by-drop aptamer solution 

analysis on a circuit with its electrodes and sensor area exposed to open air.  This method 

simulated an open air environment that one could expect if the sensor was out in the field.  

The functionalized area supported this assessment by having a unique hydrophilic 

property that allowed droplets of from 1 µL to 10 µL to stick to the circuit surface.     



 

 

60 

 

 

3.3.1 Static Fluid Test 

The static fluid test was accomplished by putting the functionalized circuit into 

the probe chamber and lowering the electronic probe tips onto the surface electrodes as 

shown in Figure 16.   

 
Figure 16:  Static test setup.  
Performed on ssDNA 77bp 
functionalized chip.  The solution on 
the chip is 10uL, 50 nM of target 
DNA.  The probes are set to record 
current changes for a fixed 0.2 volts. 

 

The target DNA was added to the sensor in 1uL, 5uL and 10uL increments via 

pipette to determine the overall change in current as a function of time.  That information 

was recorded via the Keithley 4200 SCS with the four terminal function set to the same 

parameters as the microfluidics test.   
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3.5 Atomic Force Microscopy 

Atomic force microscopy (AFM) was developed by Binning at IBM developed it 

in 1982 [90].  AFM tapping modes work by detecting the deflections of a cantilever beam 

as it passes over the sample surface.  Simple beam equations can help determine the 

resonant frequency of the beam.  The AFM used in this research has a coherent laser 

beam focused on the top of the beam.  As the beam vibrates from surface interactions, 

photodetectors pick up the diffracted laser light and use sophisticated equations to 

determine the amplitude and the resonant frequency of the cantilever beam.  This 

information is converted into a coherent signal that is displayed as magnitude or phase 

information to the operator [91].   

Using the tap mode AFMs can determine the surface roughness of the graphene 

on the SiO2.  Since ssDNA and cDNA are bound to graphene the general binding is 

occurring on the surface of graphene.  It can be used to determine the roughness of the 

graphene surface, the attachment and distribution of the PBASE and DNA over the 

surface.  AFM can detect surface changes on the order of 1 nm.  This is important as the 

helical DNA used in the experiment has a 2.0 nm diameter and form structures roughly 

6.0 nm to 30.0 nm in size.  

3.6 Fluorescent Spectroscopy  

Fluorescent spectroscopy can used as a qualitative measure to determine if 

complimentary binding is occurring between ssDNA and cDNA.  Fluorescent probes 

have helped decrease DNA labeling dangers by providing alternatives to radioactive 

phosphorus probes that were attached to the 5’ DNA phosphate backbone [92].   
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3.6.1 Fluorescent Theory  

Fluorescence occurs when electrons are imbued with enough energy to jump from 

the singlet state S0 to the singlet state S1 in a molecule and relax from S1 back to S0 and 

emit a photon [59].  Phosphorescence is different from fluorescence due to an 

intermediate triplet state T1 that prevents the electron from relaxing from S1 to S0 [59].  

Photon emissions under 1.0x10-8 seconds are considered fluorescent, while photon 

emissions over 1.0x10-8 seconds are considered phosphorescent [91].   

3.6.2 Fluorescent Measurements 

The design of the circuit and the generation of microfluidic data did not allow for 

a direct fluorescent analysis to take place.  However, the 77bp target aptamers were 

functionalized with Texas-Red fluorophores and their fluorescence was indirectly 

detected with Raman spectroscopy.  The setup used for this particular set of 

measurements is the same as previously discussed under Raman Spectroscopy with the 

exception that circuits with cDNA 77bp targets were used to indirectly show 

fluorescence.   

 

IV. Results and Analysis 

This section is divided into two major sections which address the 22 base pair 

functionalized circuit and the 77 base pair functionalized circuit for easier comparison.  

To standardize results and allow for comparison of circuits, the microfluidics drain 

current data and the static drop test data were converted to percent resistance 

standardized to the initial resistance of the circuit under test.   
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The equation used is: 

0

0

( ( ) ) *100%Percent
R t RR

R
−

=  (Eq. 13) 

Where:  RPercent = percent change in resistance 

  R0 = initial resistance (Ω) 

  R(t) = resistance at time t (Ω) 

  t = time (s) 

 Preliminary results suggest the reactions are second order kinetic reactions.  

Further tests are needed to characterize the second order kinetic effects due to substrate 

and functionalization variances.  Most of the data taken below was at one aptamer 

concentration for each test.  The 22bp aptamer was functionalized using 5uL of 10mM 

concentration diluted to 10uL on the circuit surface whereas the 77bp aptamer was 

functionalized using 5uL of 50uM concentration diluted to 10uL on the circuit surface.  

The amount used to functionalize each circuit was due to economic considerations.      

 The working solution for this process was deionized water filtered by Millipore in 

0.22 µm filters.  A test was done to determine the conductivity of the deionized water 

without a graphene interconnect.  Figure 17 shows the current over 7000 seconds.  There 

are a few spikes in the data that were due to personnel bumping into the setup apparatus.  

The causes of the other disturbances is unknown but could represent tiny bubbles in the 

microfluidics chamber interfereing with the sensor results.  The mean current that could 

travel through the water was approximately 2.4025x10-11 A, which was 5 magnitudes 
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smaller than the electrical current the sensors regularly recorded under test.  Taken as a 

whole, the conduction of deionized (DI) water was minimal at best.   
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Figure 17:  Deionized water double filtered through a 0.22 um Millipore 
dispenser.   

 

The test was performed with a graphene free circuit to demonstrate minimal electrical 

current travel within the fluid medium.  The voltage for this test was set to 0.2V, which 

gives a resistance of 8.325 MΩ.   

4.1 Results and Analysis for ssDNA 22bp functionalized circuit 

The results and analysis for the ssDNA 22bp functionalized circuit are captured 

below using the DRU microfluidics test chamber and the static test unit with follow on 

Raman spectroscopy in certain cases to show complimentary binding.   

The tests done in the DRU microfluidics test chamber are called out.  The 

important parameters are the injection time, reaction time and expected reaction window.  

The injection time was represented by a red downward pointing arrow and was triggered 
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when the sensor equilibrates to a 2% response envelope over the course of 100 or more 

seconds during the real time evaluation of the experiment.  The injections and setup 

attempted to minimize disturbances from electrical and atmospheric influences.  The 

reaction time was represented with an upward pointing red arrow and usually occurs 

between 120 and 150 seconds after the injection time due to the flow rate, length of tube 

and DRU chamber size.  The reaction window was represented by a change in the sensor 

response.  Note that it does not always return to a near original percent resistance value as 

sensor drift occurred in a number of tests.  The drift can be attributed to the two terminal 

probe setup.  The target DNA used in the microfluidic tests are considered negatively 

charged entities due to the oxygen on the phosphate backbone.  

The B. anthracis spore tests were carried out on the functionalized circuits in the 

open air test units.  They are expected to be similar in conductivity to B. cereus and 0.02 

Mho/m based on work done by Marquis and Carstensen [93].   

Table 3 summarizes the input concentrations, slopes and percent change 

responses for the 22bp sensor versus different aptamers.  The figures are broken out in 

each section according to the target aptamer and ordered from lowest to highest 

concentration.  The slopes are calculated from the starting reaction time and 

concentration for the first response peak only.  Most of the reaction slopes seem to have 

inversion points in the rise response that would qualify them as second order chemical 

reactions.  However, no attempt was made to characterize these reactions as second order 

due to the amount of noise in the responses and limited data availability.    
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Table 3:  22bp circuit versus multiple target DNA aptamers. 

ssDNA 22bp sensor response  

Target Conc. 
(nM) 

Signal  
Start  
(ΔR/R0)% 

Slope 
((ΔR/R0)%)/s 

Signal  
Max  
(ΔR/R0)% 

Signal  
Difference 

c22bp 1.1 2.332 -0.003700 1.523 -0.809 

c22bp 1000 -1.794 -0.015745 -2.09 -0.296 

c22bp 1000 -2.254 -0.011300 -2.548 -0.294 

c22bp 377 0.52 0.005300 1.473 0.953 
c22bp 377 5.543 0.000588 6.373 0.83 
39bp 55 0.961 0.014800 7.327 6.366 
39bp 167 2.469 0.012400 7.829 5.36 
77bp 16 0 0.005650 1 1 
77bp 50 -1.024 0.009200 3.042 4.066 

77bp 167 3.577 0.036700 18.68 15.103 

 

Table 4 is a summary of the 22bp sensor exposure to B. anthracis Sterne strain 

spores.  The tests were static tests as previously discussed.     

Table 4:  22bp circuit versus B. anthracis Sterne strain spores. 

ssDNA22bp aptamer sensor exposed to B. anthracis Sterne strain spores 

Target Conc. 
(Spores/L) 

Estimated 
Spores Start (s) Stop (s) 

Signal  
Max  
(ΔR/R0)% 

Slope 
(ΔR/R0)%)/s 

Spores 
1A 735 735 182.5 325.4 0.847 0.0061 

Spores 
2A 3750 4485 329.7 529.3 1.847 0.0093 

Spores 
3A 3750 8235 530.1 661.3 4.903 0.0371 

 

4.1.1 ssDNA 22bp versus DI water 

The 22bp sensor was tested against double filtered deionized water at the 

beginning of every run.  The response was random up until the point that the response 

envelope was within 2% of the signal over the course of 100 seconds.   
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4.1.2 ssDNA 22bp versus complimentary DNA 22bp  

Figure 18 shows the ssDNA 22bp sensor exposed to a 300uL of 1.1nM, 22bp 

complimentary DNA.  The reaction occurs at 873 seconds and results in a decrease from 

2.332% to 1.523% over the course of 200 seconds.  The decrease in resistance suggests 

that the ssDNA22bp aptamer interacts with the cDNA 22bp in such a way that reduces 

the overall resistance in the graphene sheet. 
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Figure 18:  22bp circuit versus 1.1nM, 22bp target aptamer solution. 

 

Figure 19 shows ssDNA 22bp sensor exposed to 300uL of 377nM, 22bp aptamer 

of complimentary DNA.  The resistance increased by 0.953 % over the course of 178 

seconds and then stopped.  This event is shown by the half-concave response from 373 

seconds to 551 seconds time range.  The spikes in the signal between 1000 and 2000 

seconds are attributed to people bumping into the setup.  The continuing upward trend is 
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either sensor drift or an ongoing reaction with the ssDNA 22bp on the surface of the 

sensor.  The sensor response increase may be attributed to the cDNA22bp aptamers 

competing for space on the functionalized surface.   

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.5

1

1.5

2

2.5

3

3.5

4

ssDNA22bp vs. cDNA22bp

( ∆
R

/R
0)%

Time (s)

C=377nM

 
Figure 19:  22bp circuit versus 377nM, 22bp target aptamer solution. 

 

Figure 20 is a continuation of the reaction in Figure 20 to determine if it was 

possible to overload the sensor.  The injection at 5213 seconds is a 300 uL, 377nM 

concentration of 22bp complimentary DNA.  The sensor rises from 5.543% to 6.373% 

and then drops off abruptly back to the original resistance value.  This response may be 

attributed to either a buildup of cDNA22bp with a subsequent collapse of the electrical 

resistance as the target concentration of cDNA22bp became too large for the bound 22bp 

aptamer to handle.  Or it could be a triple helix binding state that is possible with this 

particular target DNA.   
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Figure 20:  22bp circuit versus 2X 377nM 22bp target aptamer solutions. 

  

Assuming the ssDNA22bp and cDNA22bp could form a triple helix, the question 

becomes how this happen?  As the concentration of target aptamers increase, they 

continue to bind with the ssDNA22bp functionalized aptamers on the graphene surface.  

The system continues to build eventually reach a tipping point where the cDNA 

continues to recognize its compliment and binds into the already formed ssDNA 22bp-

cDNA 22bp and decreases the overall current by driving the double stranded DNA 22bp 

from an upright position back into the graphene.  This makes sense because the additional 

cDNA 22bp even while bound into the double helix does not have fully shielded 

hydrogen bonds.  There are relative stabilities for base triplets that match the available 

configurations with the ssDNA 22bp and the cDNA22bp.  Figure 21 shows the strongest 

and most likely base triplets are T*AT with 13 of 22 base pairs forming at the base of the 



 

 

70 

 

 

ssDNA22bp-cDNA22bp double helix.  The T*AT bonds 13 of 22 base pairs and 

respresented with given by blue crosses in Figure 21.  The standard Watson-Crick 

AT/CG bonds given by red dashes[50].     
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Figure 21:  Stable triple helix bond . 
 

Figure 22 shows the second strongest base triplet sequence T*GC with 5 of 22 base pairs 

forming at the 11 base pair and continuing up with 3 of 22 base pairs rebinding into 

T*AT configuration.  The T*GC binding is represented by the green circles between the 

cDNA 22bp sequence and the ssDNA 22bp-cDNA22bp sequence.  The red dashes 

indicate hydrogen bonding for B-DNA Watson-Crick complimentary binding.  The blue 

crosses indicate the stronger T*AT bond [50]. 
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Figure 22:  Second Stable triple helix binding for 22bp aptamers.   
 

Figure 23 shows the introduction of two cDNA injections as the sensor was 

equlibriating with the DI water in the microfluidics chamber.  The injections were 100uL 

of 1000nM, 22bp cDNA.  The injection spacing was over the course of 100 seconds.  

This test was done to see how the system would react to smaller volumetric dose at a 

higher concentration.  Reviewing the data, one cannot be sure if the small response was 

due to an inability of the 22bp aptamer on the circuit to bind properly because of the 22bp 

target aptamer competing for one another or if the number of 22bp target aptamers 

saturated the circuit.  The low response to 1.1 nM, higher response to 377 nM and low 

response to 1000 nM may indicate a preferential binding concentration.  The spikes in the 

system were from personnel bumping into the side of the setup apparatus.   
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Figure 23:  22bp circuit versus 1000nM, 22bp target aptamer solution. 

 

The response of the 22bp sensor aptamer to the complimentary 22bp target aptamer 

suggests the complimentary binding occurred in a way that reduced the amount of 

interfering bonds in the graphene conduction path.  This is interesting because it may 

indicate straight chain behavior based on the length of the DNA chain and the 

interactions of the ssDNA bp aptamers in response to the cDNA 22bp target aptamer.   

  

4.1.3 ssDNA 22bp versus DNA 39bp 

Figure 24 shows the 22bp aptamer sensor exposed to 300uL of 55nM, non-

complimentary 39bp target aptamer.  The reaction starts at 1754 seconds and rises for 

429 seconds.  The percent change in resistance is 6.36%.   
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Figure 24:  22bp circuit versus 55nM, 39bp target aptamer solution.   

 

This change in resistance is assumed to be due to the number of available sites that the 

ssDNA22bp can interact with on the 39bp sequence.  There is an analysis performed for 

the 77bp sequence that was exposed to the 22bp aptamer in section 4.1.4 that provides a 

potential answer to the question of why the 22bp aptamer responds so well to the 39 bp 

target aptamer.   

Figure 25 shows the 22bp aptamer sensor exposed to 300uL of 167nM, non-

complimentary 39bp target aptamer.  The reaction starts at 1101 seconds and rises for 

434 seconds.  The percent change in resistance is 5.36%.   This change in resistance is 

assumed to be due to the number of available sites that the ssDNA22bp can interact with 

on the 39bp sequence.   
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Figure 25:  22bp circuit versus 167nM, 39bp target aptamer solution. 

 

4.1.4 ssDNA 22bp versus DNA 77bp 

Figure 26 shows the 22bp aptamer sensor exposed to 300uL of 16.7nM, 

noncomplimentary 77bp target aptamer.  The reaction starts at 2830 seconds and rises for 

1000 seconds.  The percent change in resistance of the rise is approximately 1.0% and it 

excludes the information above the 1% response.  Even though the data above the 1% is 

useful, there was concern the remaining information would be incorrect due to the 

remaining spikes from personnel bumping into the setup. 
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Figure 26:  22bp circuit versus 16.7nM, 77bp target aptamer solution. 

 

The response was assumed to be due to the low concentration of the 77bp target 

aptamer.   

Figure 27 shows the 22bp aptamer sensor exposed to 300uL of 50nM, non-

complimentary 77bp target aptamer.  The reaction starts at 570 seconds and rises for 445 

seconds.  The percent change in resistance is approximately 4.0%.   
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Figure 27:  22bp circuit versus 50nM, 77bp target aptamer solution.  

 

The 22bp sensor response to the 50nM concentration is approximately 2X larger 

than the response to 16.7nM concentration.  This may be due to the increase in available 

interaction sites based on the overall concentration of the 77bp aptamer.   

Figure 28 shows the 22bp aptamer sensor exposed to 300uL of 167nM, non-

complimentary 77bp target aptamer.  The reaction starts at 1283 seconds and rises for 

411 seconds.  The percent change in resistance is approximately 15%.   
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Figure 28:  22bp circuit versus 167nM 77bp target aptamer solution. 

 

The response of the 22bp aptamer sensor was approximately 10X the response to 

the 1.67nM concentration and may be solely due to the concentration increase.     

The response of the 22bp aptamer sensor to the cDNA 22bp aptamer seems odd 

since complimentary binding is expected to produce a much larger response than the 39 

bp and 77bp aptamers.  This issue was explored with the help of the OligoAnalyzer 3.1 

toolkit[56].  The 22bp aptamer was entered into the system at a 1.1nM concentration and 

matched against the heterodimer configuration for the 22bp target aptamer, and the 77bp 

target aptamer at 0.01 Mg2+ salt concentration with the temperature set to T = 25 °C.  The 

idea was to determine where the 22bp aptamer and 77bp aptamer had the capability to 

form heterodimers.   
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The theoretical results showed the 22bp functionalized aptamer versus the 77bp 

target aptamer had a higher Gibbs free energy (-7.3kcal/mole for a 5bp match) than the 

22bp functionalized aptamer with the cDNA22bp target aptamer sequence (-

39.61kcal/mole for a full 22bp match).  Figure 29 shows the Gibbs Free energy plotted 

against the available base pairs.  It seems reasonable that the 22bp functionalized aptamer 

would have a very strong attraction to the cDNA 22bp aptamer.  Unfortunately, the 22bp 

functionalized aptamer is secured on the 5’ end which excludes many of the available 

sites for most of the cDNA22bp target aptamer binding configurations.  This particular 

analysis was carried out only for the 22bp functionalized aptamer because of the odd 

result when the sensor was exposed to the 77bp target aptamer.  The analysis can be 

extended to the 39bp sequence due to the fact that it consists of the last half of the 77bp 

sequence. 
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Figure 29:  Gibbs Free Energy availability for heterodimer binding on 
the 22bp functionalized aptamer. 
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4.1.5  ssDNA22bp versus DNA summary 
  

The 22bp aptamer functionalized sensor performed as expected against the 

complimentary 22bp target aptamer.  It did not perform as expected against the 39bp or 

77bp aptamer due to what is thought to be conformal binding capabilities of the 39bp and 

77bp sequences to the linear 22bp aptamer.  Further study should be performed to verify 

if this is really the case.   

4.1.6 ssDNA 22bp versus B. anthracis Sterne strain spores 
 

The ssDNA22bp sensor was exposed to B. anthracis Sterne strain spores in DI 

water in a static test configuration as shown in Figure 30.  The ssDNA22bp showed a 

change in response after introducing 1uL of a 7.35x108 spores/L concentration.  This 

equates to approximately 735 B. anthracis spores in 1 µL of DI water.  The next two 

injections were 5 µL drops at 3750 spores/L.  The percent change in resistance increased 

0.847% for the first injection, 1.847% for the second injection and 4.903% for the third 

injection.  
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Figure 30:  22bp circuit versus multiple exposures of B. anthracis spores. 

 

This response is useful because it shows that something happens almost right 

away.  The 22bp aptamer should only be detecting the B. anthracis spores because the 

circuit already adjusted to the introduction of water.  Note that the sensor resistance 

should increase as spores interact with the 22bp aptamer and interfere with the 22bp 

aptamer-graphene electrical path.  This trend increases with the addition of a 5 µL 

concentration of approximately 3750 spores at 315 seconds and the addition of a 5 µL 

concentration of approximately 3750 spores at 520 seconds.   

Figure 31 shows the increase in percent resistance change versus spore 

concentration instead of time.  Keep in mind, the spore concentration is associated with 

the concentrated drop that hit the surface, the 22bp aptamer may not have detected all 735 
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spores, it may have only interacted with a handful, meaning the sensor sensitivity might 

be better than previously thought.   
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Figure 31:  22bp circuit versus B. anthracis spores. 

The electrical current-time plot curves obtained with the Dolomite microfluidics 

chamber were similar to research that has been published by Mohanty and Berry [13].  

They used a graphene oxide coated with an aminated ssDNA and then sealed the surface 

with an ethanolamine in a nitrogen environment.  Mohanty and Berry’s setup detected 

live and dead single cell gram negative Geobacter and gram positive Bacillus cereus.   

The ssDNA22bp aptamer sensor that was exposed to B. anthracis spores was 

transferred to the AFM lab for binding verification.  The face of the circuit was stuck to 

the bottom surface of the top lid of the Petri dish when it arrived.  The circuit was pried 
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off the petri dish and sonicated for 5 minutes and placed into the AFM.  Figure 32 

indicates the regions that were imaged with the blue dashed lines around the area.  The 

AFM data showed a relatively flat surface with 500 nm structures that resemble smashed 

B. anthracis spores.  Remember B. anthracis spores are approximately 2.0 µm in 

diameter and the graphene functionalized circuit area is hedged on two sides by 100 nm 

(30 nm Cr/70 nm Au) electrodes.   

 

 
Figure 32:  AFM image of 22bp aptamer functionalized circuit.  The 500 nm 
structures are most likely damaged B. athracis spores. 

 

 The AFM tip was moved to spot #1 in Figure 33 to and a separate section of the 

functionalized area was explored.  This time spot #1 had flakes on the surface of the Au 

probe.  These flakes are probably due to the refunctionalization of the graphene circuit by 

thermally transferring a new layer of graphene onto the circuit and annealing it after the 

original circuit failed from use.   
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Figure 33:  AFM picture shows minimal surface features for ssDNA 22bp aptamer 
exposed to B. anthracis spores.    

 

 The second spot area in Figure 33, resembles the thrombin aptamer (3 nm long) 

modified graphene channel  shown in Ohno [33].  The direct verification of 22bp 

aptamers on the surface cannot be confirmed with the current AFM data due to the 

reported heights.   

4.2 Results and Analysis for ssDNA 77bp functionalized circuit  

The results and analysis for the ssDNA 77bp functionalized circuit are similar to 

the ssDNA22bp circuit above with the exception that the 77bp aptamer was also tested in 

a static configuration to mimic a real sensor.  The injection time, reaction time and 

expected reaction windows are triggered with respect to the 2% signal envelope over the 

course of 100 or more seconds during the real time evaluation of the experiment.  The 

injections and setup were done as carefully as possible to minimize extraneous 

influences.  The target DNA used in the microfluidic tests are considered negatively 

charged entities due to the oxygen on the phosphate backbone.  The spores are expected 



 

 

84 

 

 

to be similar to B. cereus and have an expected conductivity of 0.02 Mho/m based on 

work done by Marquis and Carstensen [91].   

The 77bp sensor responses versus the target aptamers are shown in Table 5.  The 

information contained focuses on the first response peak only.  The slopes are calculated 

from the starting reaction time and concentration for the first response peak.  Most of the 

reaction slopes seem to have inversion points in the rise response that would qualify them 

as second order chemical reactions.  However, no attempt was made to characterize these 

reactions as second order due to the amount of noise in the responses and limited data 

availability. 

 

Table 5:  77bp circuit versus multiple target aptamers. 

ssDNA 77bp sensor response 

Target Conc. 
(nM) 

Signal  
Start  
(ΔR/R0)% 

Slope 
((ΔR/R0)%)/s 

Signal  
Max  
(ΔR/R0)% 

Signal  
Difference 

18bp 1.85 -0.03123 -0.00036 -0.07229 -0.04106 
18bp 56 0.02 0.0000498 0.12 0.1 
18bp 167 2.564 -0.0023 2.299 -0.265 
22bp 1.1 1.179 0.006 1.508 0.329 
22bp 55 -11.2 -0.0052 -13.4 -2.2 
22bp 111 0.0185 0.0075 0.4851 0.4666 
22bp 337 -12.67 -0.0108 -14.95 -2.28 
22bp 452 3.551 -0.0015 3.282 -0.269 
c39bp 167 -0.6279 0.0018 -0.4922 0.1357 
c39bp 167 6.773 0.007 7.234 0.461 
c39bp 55 5.58 0.0012 5.859 0.279 
c77bp 5 0 0 0 0 
c77bp 50 1.19 0.0113 6.576 5.386 
c77bp 50 2.633 0.0135 9.016 6.383 
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Table 6 is a summarization of the 77bp aptamer response to the B. anthracis exposure. 

Table 6:  77bp circuit versus B. anthracis Sterne strain spores 

ssDNA77bp sensor versus B. anthracis Sterne strain spores 

Target Conc. 
(Spores/L) 

Estimated 
Spores Start (s) Stop (s) 

Signal  
Max  
(ΔR/R0)% 

Slope  
((ΔR/R0)%)/s 

Spores 
A 7350 7350 100 520 0.75  
Spores 
B 7350 14700 522 1000 0.7  
Spores 
1A 735 735 355.9 359.2 2.89 0.8455 

Spores 
2A 3750 4485 663.4 675.4 7.03 -0.58 

Spores 
3A 3750 8235 1000 1015 12.67 -0.8447 

 

4.2.1 ssDNA 77bp versus DI water 

The 77bp sensor was tested against double filtered deionized water at the 

beginning of every run.  The response was random up until the point that the response 

envelope was within 2% of the signal over the course of 100 seconds.  Once this point 

was reached the test was executed.     

4.2.2 ssDNA 77bp versus degenerate DNA 18bp  

Figure 34 shows the 77bp sensor exposed to 300 uL, 1.85nM degenerate 18bp 

target aptamer.  The reaction time started at 1030 seconds.  The percent resistance 

decrease is approximately 0.03%.  The small concentration size and the random sequence 

variation associated with the degenerate 18bp DNA are considered factors as to why 

there was minimal response by the ssDNA77bp.   
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Figure 34:  77bp circuit versus 1.85nM, 18bp target aptamer solution.   
 

The 77bp aptamer sensor response to the degenerate 18bp target probe concentration was 

not significant enough to produce a useable response.   

Figure 35 shows the ssDNA77bp aptamer response upon introduction of 300 µL, 

55.6 nM, non-complimentary 18bp degenerate DNA.  The response envelope did not 

exceed 2% during the reaction window.  The signal did however deviate slightly from the 

mean resistance resulting in a resistance increase.  It is assumed the resulting change 

signal was due to sensor drift from the continued introduction of DI water.   
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Figure 35:  77bp circuit versus 56nM 18bp target aptamer solution. 

 

The 77bp aptamer sensor response to the degenerate 18bp target probe concentration was 

not significant enough to produce a useable response.   

Figure 36 shows the ssDNA77bp aptamer sensor exposed to 300 µL of 167 nM, 

non-complimentary 18bp degenerate DNA.  The reaction starts at 1150 seconds and 

decreases for 107 seconds.  The percent change in resistance is approximately -0.265%.     
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Figure 36:  77bp circuit versus 167nM 18bp target aptamer. 

 

The 77bp aptamer sensor response to the degenerate 18bp target probe concentration was 

not significant enough to produce a useable response.  These results show that the 77bp 

aptamer sensor is relatively insensitive to non-complimentary DNA binding.   

4.2.3 ssDNA 77bp versus DNA 22bp  

Figure 37 shows the ssDNA77bp aptamer sensor exposed to 300 µL of 55 nM, 

non-complimentary 22bp target aptamer.  The reaction starts at 1338 seconds and 

decreases for 385 seconds.  The percent change in resistance is approximately -2.2%.  

The second target was 300 µL of 337 nM, non-complimentary 22bp target aptamer.  The 

reaction starts at 2242 seconds and decreases for 211 seconds.  The percent change in 

resistance is approximately -2.28%. 
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Figure 37:  77bp circuit versus 55nM and 337nM 22bp target aptamers. 

 

The change in resistance is due to the converse ability of a 22bp target aptamer to 

attach to a 77bp functionalized surface aptamer.  The signal response isn’t as big because 

the 22bp aptamer is linear in solution and would have a hard time binding to the three 

dimensional 77bp sequence.  Similar changes in resistance were found when the 

ssDNA77bp circuit was exposed to 1.1nM and 111nM concentrations of 22bp non-

complimentary target aptamers.   

Figure 38 shows the 77bp functionalized circuit exposed to a 300uL, 1.1nM, non-

complimentary 22bp target aptamer.  The reaction started at 1550 seconds and induces a 

percent resistance change of 0.4% for approximately 667seconds.  The second exposure 

of 300uL, 111nM, non-complimentary 22bp target aptamer had a reaction that started at 

3000 seconds and  induced percent resistance change of 0.54% for approximately 650 

seconds.  
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Figure 38:  77bp circuit against 1.1nM and 111nM 22bp aptamer solution.  

 

The 77bp aptamer sensor had a mean 0.47% response to the 22bp non-complimentary 

target aptamer.   

Figure 39 shows the ssDNA77bp aptamer sensor exposed to 300 µL of 452 nM, 

non-complimentary 22bp target aptamer.  The reaction starts at 100 seconds at 3.551% 

and decreases to 3.282% at 1347 seconds.  The percent change in resistance is 

approximately 0.27%.   
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Figure 39:  77bp circuit versus 452nM, 22bp target aptamer solution.   

 

The percent changes in resistance of the 77bp aptamer sensor versus the 22bp non-

complimentary aptamer for the various configurations suggests that there may be certain 

concentrations of 22bp aptamer that allow for better binding than others due to less target 

aptamer competition.     

4.2.4 ssDNA 77bp versus complimentary DNA 39bp  

ssDNA 77bp was exposed to a 39bp complimentary half strand to determine the 

effect it would have on the recognition sequence of the 77bp.  The data suggests that the 

77bp sequence treats the 39 bp sequence much like the 22bp sequence.   

The following data is from a sensor that used a direct graphene to gold thermal 

tape deposition.  Unfortunately, the ssDNA77bp sensor had minimal responses to 

cDNA39bp in the following 300uL concentrations, 1.1nM, 55.6nM and 167nM.   



 

 

92 

 

 

Figure 40 shows the 77bp aptamer sensor exposed to 300uL of 55nM, 

complimentary one-half 39bp target aptamer and a 300uL, 167nM, complimentary one-

half 39bp target aptamer.  The first reaction starts at 1640 seconds and induces a percent 

change in resistance of approximately 0.4% for 667 seconds.  The second reaction starts 

at 2630 seconds and induces a resistance change of approximately 0.54% for 650 

seconds.   
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Figure 40:  77bp circuit versus 55nM and 167nM 39bp target aptamer solution. 

 

The response for this particular sensor was startling weak.  There were two issues 

noted on this particular sensor.  It had been refunctionalized (which means the graphene 

was placed on top of the Au/Cr electrodes) which may have reduced its response 
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capability in solution.  Or the fluorophores on the end of the 39bp target aptamer 

interfered with bonding to the surface aptamers.   

Figure 41 shows the 77bp aptamer sensor exposed to 300uL of 167nM, 

complimentary one-half 39bp target aptamer.  The reaction starts at 1135 seconds and 

rises from -0.629% to -0.4922% in less than 100 seconds and remains there for 639 

seconds.  The percent change in resistance is approximately 0.14%.   
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Figure 41:  77bp circuit versus 167nM 39bp target aptamer solution.   

 

The change in magnitude was similar to Figure 40, which suggest that either the 39bp 

target aptamer has trouble binding to the ssDNA77bp functionalized aptamer or the 

refunctionalization of the circuit did not work as intended.   
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4.2.5 ssDNA 77bp versus complimentary DNA 77bp 

 Figure 42 shows the 77bp aptamer sensor response to a 300uL, 5.0 nM, 

complimentary 77bp target aptamer.  The reaction starts at 1310 seconds.  It does not 

look like there is a significant change in the rise of the overall signal.  In this particular 

case, the response may be more than zero but it is hard to tell given the upward sensor 

drift and the lack of slope response seen in higher concentrations of target aptamers.   
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Figure 42:  77bp circuit versus 5.0nM 77bp target aptamer solution. 

 

Figure 43 shows the 77bp aptamer sensor response to a 300uL, 50nM, 

complimentary 77bp target aptamer.  The reaction starts at 1111 seconds and peaks at 

1587 seconds with a resistance change of 5.38%.    
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Figure 43:  77bp circuit versus 50nM 77bp target aptamer solution. 

 

The change in resistance profile is markedly different than the previous exposure profiles.  

The circuit fell from 6.576% to a near initial resistance state at 1.22% after 2313 seconds.  

The extended tail may be indicative of a slow complimentary de-binding process from 

the 77bp aptamers.   

 Figure 44 shows a ssDNA77bp functionalized aptamer response to 300uL, 50nM, 

complimentary 77bp target aptamer.  The circuit stabilized at 500 seconds with injection 

point at 520 seconds.  The resistance increased from 2% to a maximum of 9% at 1132 

seconds.   
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Figure 44:  77bp circuit versus 50nM 77bp target aptamer solution. 

 

The circuit response fell from 9 % to approximately 2.9% after 1254 seconds.  The tail 

drifted up to about 4% and seemed to stay there.  The behavior of the extended tail may 

be indicative of a slow complimentary de-binding process from the 77bp aptamers.  The 

upward drift should be explored as it was not expected.    

 The 77bp functionalized circuit had Raman spectroscopy performed before it was 

exposed to the complimentary 77bp target aptamer and after it was examined with an 

AFM.  Figure 45 shows the Raman spectra from 600 cm-1 to 4000 cm-1 of the 77bp 

aptamer before it is imaged with the AFM.  The 77bp aptamer Raman response is similar 

to Figure 15 as previously discussed.  The major difference is the larger hump associated 

with the ssDNA77bp + cDNA77bp line.  This is indicative of fluorescence and it is 

partially due to the natural fluorescence of DNA and partially due to the Texas-Red 

fluorophore attached to the cDNA 77bp target aptamer. 
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Figure 45:  77bp aptamer functionalized circuit pre and post 77bp complimentary target 
aptamer exposure. 

 

The AFM results for the 77bp circuit versus the 77bp target aptamer are shown in 

Figure 46.  The circuit was lightly rinsed with DI water to remove remaining 77bp target 

aptamers.  It was sonicated for 5 minutes and then allowed to dry in order to reduce 

forces on the AFM.  The concentration of 77bp target aptamer was 5.0 µM.  The 

structures shown in Figure 46 are interesting in that they resemble three-dimensional 

spherical forms that could be associated with the binding of the 77bp aptamer to the 

cDNA 77bp target aptamer.  All we have at this point is indirect evidence provided by the 

previous Raman spectrum in Figure 45.     
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Figure 46:  77bp aptamer exposed to complimentary 77bp target aptamer under AFM.  The 
top right inset is a magnification of the top left. 

 

The lack of clearly defined DNA might lead one to speculate, why can other researchers 

see DNA on their devices and yet we cannot.  Many researchers use DNA measured in 

kilobases to perform their research.  The aptamers used in this research were 

approximately 6 nm to 30 nm and 22 to 77 base pairs in length. 

4.2.6  ssDNA 77bp Aptamer Static Responses 

  The static responses inject points are indicated with red arrows.  Figure 47 shows 

a 77bp functionalized graphene circuit exposed to multiple target DNA over a 2.5 hour 

time period.  The interesting point to note is that the characteristics associated with the 
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slope of the rise times associated with the target DNA.  The complimentary sequences 

have lengths between 6 and 30 nm.   
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Figure 47:  Static test of 77bp aptamer sensor versus multiple DNA targets.      

 

The initial 120 seconds shows the resistance change of a dry circuit.  The resistance 

change between 121 seconds to 1320 seconds was the circuit equilibriating to 10 µL of 

DI water.  After equilibrating, the first exposure was a 10 µL complimentary half-

sequence 39bp target aptamer for a 1% resistance change.  The second exposure was to 

10 µL of complimentary 77bp target aptamer for a 3.6% resistance change.  The third 

exposure was to another 10 µL of complimentary 77bp target aptamer for another 3.6% 

resistance change.  The last exposure was to a 10 µL noncomplimentary 22bp target 

aptamer for a 4.6% resistance change. 
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 Figure 48 shows the ssDNA77bp sensor response to a 10 µL, 1.0 µM 

complimentary 77bp target aptamer in a static test configuration.  The reaction time starts 

at 210 seconds at 1.016% and increases to 8.16% over 130 seconds.  This represents a 

resistance increase of 7.14%.   
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Figure 48:  Static test of 77bp circuit versus 1000nM, 77bp target aptamer. 

 

The response was rather large due to the amount of target aptamer used.  The increase in 

sensor response after the exposure is expected to be from sensor drift.      

4.2.7 ssDNA 77bp versus B. anthracis Sterne strain spores 

Three static tests were conducted with B. anthracis Sterne strain spores against 

three different sensors.  The spores were diluted into ratios; 1:10, 1:100, and 1:1000.  The 

initial 1:10 diluted concentration started from a 50 µL, 7.35x105 spores/mL stock solution 
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of deionized water.  The 1:100 diluted concentration was 7.35x104 spores/mL in 1 mL of 

deionized water.  The final 1:1000 diluted concentration was 7.35x103 spores/mL in 1 

mL of deionized water.  The spores in the previous concentrations were exposed to an 

unfunctionalized graphene surface to determine the difference in sensor response.  The 

experiment was carried out with an open probe station connected to the Keithley 4200 

SCS.  The Keithley was set to record the drain-current versus time at a set Vdrain = 0.2 V 

DC.  The first test shown in Figure 49 explored the drops against non-functionalized 

graphene surface to determine the circuit response. 
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Figure 49:  Static drop test of spores and DI water.   

 

Spores dropped in 10 µL DI water increments at a starting concentration of 

7.35x108 spores/L.  The first 3 drops are spores, the fourth and fifth drops are DI water.  

The inject points were varied to determine if the drop order mattered or if there would be 
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a significant change in the signal slopes measurements.  The slopes in Figure 49 look 

very similar.  This can be interpreted as spores introduced to non-functionalized graphene 

do not have the same effect as spores on a functionalized graphene surface.  This 

indicates a need for a functionalized graphene surface to determine if spores are present 

or not.          

The next static test is shown in Figure 50 was performed as the 77bp 

functionalized circuit was exposed to two concentrations of 3675 spores/L of B. 

anthracis.  The spore samples (3675 spores/L) were pipetted into a 10 µL volume from a 

50 µL base stock of 7.35x108 spores/L.           
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Figure 50:  ssDNA77bp functionalized circuit exposed to B. anthracis  Sterne strain.   
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 The first 10 µL drop started at 100 seconds and resulted in a 0.75% decrease.  The 

second drop started at 522 seconds and resulted in a 0.7% decrease in resistance.  The 

decrease in circuit resistance is indicative of spore attachment to the surface of the circuit.   

Figure 51 shows the percent resistance change as a function of the concentration 

of spores introduced to the 77bp circuit.  The low percent resistance change could be due 

to the age of the sensor, the time required for the spores to disperse in the water or 

possibly the number of spores “competing” for sites on the ss77bp aptamers. 
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Figure 51:  B. anthracis Sterne strain spores exposed to 77bp GFET sensor.  
Spore concentration was between 7350 and 14700 spores per liter. 

 

Figure 52 shows the ssDNA77bp sensor exposed to a 1 µL concentration of 

approximately 735 spores at 360 seconds.  The sensor resistance seems to increase 

momentarily as the spores are absorbed onto the surface.  It is not clear because the 

spores should have a negative charge associated with their surface structure, if it can be 
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assumed that the spores can be similarly modeled as B. cereus spores [93].  This trend 

disappears with the addition of a 5 µL concentration of 3750 spores at 664 seconds and 

the addition of a 5 µL concentration of 3750 spores at 990 seconds. 
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Figure 52:  77bp sensor response to B. anthracis  Sterne strain spores.  

 

The response in Figure 52 seems reasonable as the spores are expected to bind 

into the ssDNA 77bp aptamer quickly and it is supposed to show a decrease in resistance.  

Figure 53 was constructed to give an idea of the overall sensitivity of the 77bp 

aptamer as a function of being exposed to certain spores/Liter concentrations of B. 

anthracis.  The sensitivity equation previously discussed could be used to determine what 

the overall sensitivity is from the data but it would be more prudent to not calculate it 

because there are only 3 data points to use.  More replicates are needed before a decent 

sensitivity can be determined.    
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Figure 53:  Percent resistance change to B. anthracis  Sterne strain spores. 

 

 The ssDNA77bp aptamer sensor that had been exposed to B. anthracis spores was 

taken to a lab with an AFM for further analysis.  The sensor was mildly sonicated for 5 

minutes and washed with DI water.  Figure 54 shows two areas that were explored with 

the AFM.  Notice in the picture there is a lot of debris.  The sensor may have picked it up 

during the testing or during the overall design as these sensors were not built in a clean 

room and were also tested to determine if a quick and cheap sensor could be constructed 

and used with relative ease.   



 

 

106 

 

 

 
Figure 54:  ssDNA77bp functionalized circuit exposed to B. anthracis.   

 

Figure 55 shows B. anthracis Sterne strain spores present on the surface of the 

sensor.  The spores are clearly indicated by the large white globules on the surface.  It is 

unclear whether the spores are attached due to the 77bp strands on the functionalized 

surface or if they are there because it was a suitable spot to aggregate.  The bottom 

images have been magnified to determine if ssDNA 77bp strands are present on the 

surface of the sensor.  The lower left image shows large cable-like structures that could 

be indicative of ssDNA77bp strands forming homo-dimers on the surface.  The red arrow 

indicates structures that are 150-700 nm wide and 35 nm in height.  The yellow arrow 

indicates structures that are 200-400 nm and 35 nm in height.  All in all, the most that can 

be said is that there are B. anthracis spores on the circuit. 
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Figure 55:  AFM images of B. anthracis Sterne strain spores on a ssDNA 77bp 
functionalized circuit.      

 

The second test region (Figure 54) was taken on top of the gold probe.  The data also has 

large clusters of B. anthracis Sterne strain spores and structures similar to Figure 55.  It 

seems that the B. anthracis Sterne strain spores attached wherever they fell.  It also seems 

that the chain-like structures and blob-like structures have coated and adhered to the area 

where the aptamer functionalization solution was deposited.  The expanded pictures on 

the bottom show cable-like structures.  The red arrow indicates the structures are between 

150 nm to 700 nm wide and vary in height from 40 nm to 80 nm.  The yellow arrow 

indicates structures that are 200x400nm in area and vary in height from 20nm to 60nm.  

These structures are too large to be 77bp aptamer used to construct this sensor.  There is 

the possibility that the aptamers formed homodimers on themselves and formed much 

larger structures.  Figure 56 shows more B. anthracis spores and focuses on a cleaner area 
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on the AFM.  The structures show long chains which is surprising but unless the 77bp 

aptamers formed homodimers and bound together there is not much that can be said with 

certainty.   

 
Figure 56:  AFM of B. anthracis clumped on 77bp circuit.   

 

The most that could be said from this picture is that there are B. anthracis spores on top 

of the ssDNA 77bp aptamer functionalized circuit.  There is little or no way to determine 

if the spores are truly held down by the ssDNA 77bp aptamers. 
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V. Discussion 

5.1 Summary of Results 

The primary goal of this research was to determine if it was possible to detect a 

signal from a complimentary binding event between ssDNA and cDNA aptamers derived 

from the B. anthracis Sterne strain genome on a graphene substrate.  The change in 

resistance of the ssDNA22bp graphene sensor decreased upon exposure to cDNA22bp 

and increased upon exposure to cDNA39bp and cDNA77bp.  The increase in current 

indicates ssDNA22bp underwent conformational binding with cDNA22bp and detached 

from the graphene surface.  The change in resistance of the ssDNA77bp increased the 

most when exposed to cDNA77bp, cDNA39bp which was expected.  It also changed 

when exposed to DNA22bp, and the degenerate DNA18bp but less.  The magnitude of 

the resistance change for dissimilar base pair suggests the ability to discriminate between 

different types of DNA.   

Figure 57 shows the relative first peak magnitude response of the 22bp 

functionalized sensor while it is exposed to the cDNA22bp target aptamer, 39bp target 

aptamer, and 77bp target aptamer as functions of their concentrations.  The figure shows 

a very large magnitude response of the 22bp functionalized sensor to the 77bp target 

aptamer.  This is likely due to the heterodimer configurations that the 77bp target aptamer 

can form with the 22bp aptamer.   

The 22bp functionalized aptamer was a little less responsive to the 39bp target 

aptamer.  This is also likely due to the heterodimer configurations that the 39bp sequence 

can form with the 22bp functionalized aptamer.   
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Figure 57:  Relative first peak magnitude response for the 22bp functionalized 
sensor versus multiple target aptamers.  

 

The sensitivity equation given by DARPA could be used to report data.  However, it 

would still need to be translated into a format that could map the solution concentration 

profiles directly to particles per air volume.  It should also be stated that more data is 

needed before a sensitivity determination is made.     

Figure 58 shows a compilation of the relative first peak magnitude response of the 

77bp aptamer functionalized sensor versus multiple target aptamers at various 

concentrations.  The 77bp aptamer functionalized circuit responded the most to the 77bp 

target aptamer.  The 22bp target aptamer response was a bit different.  The outcome can 

be attributed to either bad data or possibly some other electrical/conformational binding 

effect that showed up one time and needs further review.     
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Figure 58:  77bp functionalized sensor response to multiple target aptamers.   
 
 

The 22bp and 77bp sensor responses against B. anthracis Sterne strain spores are 

plotted in Figure 59 to give a side by side comparison.  The data suggest that for a static 

test with small water droplets infused with spores, the 77bp sensor performed 

approximately 2 times better than the 22bp sensor based on the limited data available.  

The responses provided by the 22bp and 77bp functionalized graphene circuit suggest 

there may be a way to detect B. anthracis spores or other biological weapons very 

quickly, somewhat accurately and cheaply.  If a number of these sensors were put out 

into an area of interest, some of them would pick up on the agent while others might miss 

it, but on the whole, if the sensors were netted together, the detection of a biological 

release would be picked up much quicker than one of these units by itself.   
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Figure 59:  22bp and 77bp sensor response to B. anthracis Sterne strain spores. 

The aptamers and the sensor still need to be fully characterized to determine how 

they react when bacteria come in contact with them and how long they can survive in the 

field.    Keep in mind from an aqueous solution perspective the 77bp aptamers were 

shown to discriminate between B. anthracis and F. tularensis the big question is can the 

aptamers and the sensor perform as well or better with an aerosolized agent?  Also, some 

of the circuits used in this research were functionalized and sat on the shelf for weeks 

until needed.  This indicates a shelf life for this particular setup but there may be ways to 

keep the aptamers on hand until they are needed to be put on a sensor.  From an 

operational standpoint, the sensor has no serviceable parts.  The only user support 

required would be getting them to an area of  interest and waiting for the sensor to trigger 

on detection.  That has to be a plus on the battlefield.  The devices were tested at 0.2V 
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throughout the experiment, so scaling the circuit down to something that can be driven 

with a watch battery or less is within our capability. 

 
5.2 Conclusion 

 After functionalizing two graphene circuits with ssDNA22bp and ssDNA77bp 

aptamers and exposing them to microfluidic environments with solutions of 18bp DNA, 

22bp DNA, 39bp DNA, and 77bp DNA and reviewing the percent changes in resistance, 

we can conclude that there is a difference in percent resistance change and that it may be 

related to the DNA length, and base pair sequence.  We also conclude that this may 

provide the ability to discriminate between different types of DNA in microfluidic 

environments.  The static tests showed marked changes in the 22bp and 77bp aptamer 

responses against the previous target aptamers listed.  The 22bp and 77bp also showed 

significant percent resistance changes when B. anthracis Sterne strain spores were used 

against them.      

5.3 Future Research 

The scope of this research was truly broad, and opportunities for future research 

exist along many different avenues.  The most pressing portions of the next stage of this 

research should involve a full characterization of the electric double layer associated with 

the ssDNA77bp aptamer via AC voltammetry.   

The target aptamers should be tried without the addition of fluorophores to 

determine if they have any effect on the ssDNA77bp aptamer complimentary binding 

signal.  Furthermore, the original 40 base pair aptamer sequence with a 3 to 6 chain linker 
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should be tried in the microfluidic state and the static fluid to determine if that particular 

configuration allows for better detection and attachment.   

A quick next step would be to continue the spore exposure with larger 

concentrations to make sure the responses are still going in the same direction.  The 

follow on step would be to test the sensor against a spray bottle with DI water to better 

understand the sensor response to water spray instead of plain fluid.  After that the same 

delivery mechanism could be used to spray spores onto the circuit and determine the 

response.    

The sensor build process could be improved by investing in a stock metallic mask 

to standardize the circuit layout and reduce connection issues with the Dolomite 

resealable lab chip.   

The graphene surface functionalization process could be improved by developing 

either a graphene growth process on the chip or a surface adhesion process that reduces 

the variability encountered with the thermal tape transfer process.  A 3D printer process 

could be designed to place multiple aptamers side by side or in different patterns to 

enhance detection capabilities.  Multiple variations of the B. anthracis ssDNA77bp 

aptamer and the pagA pXO1 and capB pX02 plasmids could be researched and tested 

with circuit designs used in this research [29].   

Electromagnetic characterization and modeling of the ssDNA-cDNA binding 

events while dispersing in a “static” fluid and in dynamic flow fields could help 

determine what molecular species or DNA might affect the aptamer.  It should also be 
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performed in the Au-Cr-graphene electrode interface to determine how the ssDNA 

aptamer or target DNA interact with those surfaces.   

Computational fluid dynamics analysis should also be carried out near the Au-Cr-

graphene interface to determine if 20 uL/min is considered laminar or turbulent at the 

10nm length scale.  Sensor characteristics such as the transfer function, calibration, 

repeatability, resolution, dynamic characteristics, environmental factors, accuracy, and 

output impedance should be studied if it is decided to stick with a silicon dioxide 

substrate or switch to a different substrate.   

And sensor integration into a radio-frequency identification unit should be 

pursued as well.   
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Appendix A:  Equipment and Settings 

Appendix:  A.1 – Dataplate Digital Hotplate 

Appendix:  A.2 – Tenma Multimeter 

Appendix:  A.3 - Keithley 4200 SCS & Probe Station 

Appendix:  A.4 – Syringe Pump / H2O Properties 

Appendix:  A.5 – Dolomite Microfluidic Cell 

Appendix:  A.6 – Raman In-via Laser Spectrometer 
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Appendix:  A.1 – Dataplate Digital Hotplate 

 

General Operation: 

Press right hand side on/off switch 

Press ENT (Set) button 

Press 1 (Plate Temp) 

Press numbers needed in Celsius. 

Press ENT (Set) button 

This will set the Dataplate to the required Celsius temperature.  The LCD will 

flash the current plate temperature versus the target plate temperature until the 

temperatures are equal.  Be careful, the plate heats at approximately 1 °C every 3 

seconds.  Remember to shut the unit off and unplug it when finished.   

Graphene temperature transfer:  T = 125 °C. 

DNA removal temperature:  T = 30 °C to 50 °C. 
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Appendix:  A.2 – Tenma Multimeter 

 

Use: 

1.)  Twist knob from OFF position to Ω position. 

2.)  Take red probe and black probe and put them on opposite circuit leads 

3.)  Unit will display a resistance value or it will display 0L. 

4.)  If it displays 0L, it means the circuit does not conduct and you need to find a new 

one. 
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Appendix:  A.3 - Keithley 4200 SCS 

 

To use the Keithley 4200 SCS: 

1.  Turn the system on 
2.  Start Keithley interactive Test Environment (KiTE) 
3.  Find I-V tester 
4.  Ensure triaxial SMU connectors are attached to the correct test circuit 
5.  Set Voltage bias to 0.2 volts 
6.  Set current compliance to 1.0 picoAmperes 
7.  Set sample buffer to 4000 
8.  Set sample rate to 1 sample per second 
9.  Test I-V curve, look for hysteresis or 2 to 3 order of magnitude jumps in response 

9.a.  If either of these are found, make sure the DRU leads are in contact with the 
circuit electrical pads 

10.  Switch to Four Terminal vgs-id plot 
11.  Ensure SMUs are same as I-V curve configuration 
12.  Start test (a. Dynamic Microfluidic Test, b. Static Test) 

A.1   Hook inlet and outlet tube to Dolomite resealable unit 
A.2   Find 2mL Eppendorf vial – poke two holes in the top and fill w/ DI water 
A.3   Push inlet tube into the hole at the top of the Eppendorf vial, make sure  
         the inlet tube touches vial bottom, fill vial with 500 µL DI water 
A.4   Hook Dolomite outlet tube to the Syringe Pump 
A.5   Turn Syringe Pump on, set to 20.00mL and begin pumping 
A.6   Watch inlet tube, DRU and outlet tube fill with DI water 
A.7   After steady state flow established,  
A.8   Go to the 4200SCS and select vgs-id under four terminal setup 
A.9   Check SMU set up ensure same as used in I-V curve test 
A.10 Drain voltage = 0.2V; Sample set to 4000; Sample rate 1/second 
A.11 Monitor sensor for 2% of the response envelope over 100 seconds 
A.12 Inject sample when DI water is within 10 µL of vial bottom 
A.13 Monitor to ensure proper test concentration remains in the Eppendorf vial 
A.14 Insert 500 µL to 1000 µL of DI water into the vial and let test  
         run to 4000 seconds  

 
B.1  Monitor test for 2% envelope and the aptamer inject point 
B.2  Once the 2% envelope is there inject the aptamer onto the circuit 
B.3  Monitor to ensure good signal 
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Appendix:  A.4 – Syringe Pump / H2O Properties 

Syringe Pump: 

Volume:  12 mL syringe 
 
Volumetric Flow Rate:  20 µL/min = 0.34 µL/s 

 

Water:   

 µ (T = 25 ºC) = 8.90 × 10−4 Pa*s 

 ρ = 997 kg/m3
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Appendix:  A.5 – Dolomite Microfluidics Chamber Information 

Microfluidics Chamber: 

Width:  11.00 mm = 0.011 m 

Length:  20.4 mm = 0.0204 m 

Depth:  100 µm = 0.0001 m  

Volume:  16.73 mm3 = 0.01673 mL = 16.73 µL 

Microfluidics Chamber Tubes: 

Front End Tube Length:  0.8084 m 

Front End Tube Inner Diameter = 0.8 mm (per Dolomite manuals) 

Area = π*(d2)/4 = π*(0.8 mm2)/4 = 5.026x10-7 m2 

Approximate travel time from entrance to resealable circuit:  120 - 160 seconds 

Backside Tube Length:  2 m 

Approximate travel time from resealable circuit to syringe:  300 seconds 
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Appendix:  A.6 – Raman In-via Laser Spectrometer 

Raman inVia Spectroscopy Chamber:  532 nm laser 

Range: 100 to 4000 cm-1 

Running conditions:  ambient temperature, ambient pressure, ambient humidity 

Use:  Thin film surface changes, chemical identification 

Limits:  No lifeforms in chamber 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

123 

 

 

Appendix B:  Circuit Recipes 

Appendix B.1 – Graphene Growth Recipe 

Appendix B.2 – Circuit Metallization 

Appendix B.3 – Graphene Functionalization 
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Appendix B.1:  Graphene Growth 

Credit for this section goes to Yen Ngoo (AFRL/RXAS) for both the writeup and the 

processing and delivery of the graphene used on this project.   

Growth:   

The chemical vapor deposition technique to deposit gaseous reactants into a 

substrate.  A thin copper foil is used and placed into a high temperature tube furnace and 

the sample is aged under 1000 °C for 30 minutes with hydrogen gas (125 mTorr pressure) 

flowing into the chamber.  Then both precursor gases (methane (1.25 Torr pressure) and 

hydrogen (125 mTorr) gases) are used and undergo chemical reactions under a furnace at 

same temperature. This is run for another 30 minutes. The chemical reaction from the 

combined gases creates a material film of carbon onto the copper foil. Instrument used 

for graphene growth is high temperature vacuum tube furnace OTF-1200X-S.   

Preparation: 

Thermal release tape is used to transfer copper foil grown graphene onto other 

substrates.  This type of heat release tape is unique because it behaves like normal 

adhesive tape at room temperature but can be easily peeled off by adding heat to it.  For 

the specific thermal release tape we use, it peels off at 125 °C.  Other tapes may have 

varying temperatures that they peel off, it just depends on the kind of tape.  

The copper foil is placed onto the tape and ready for the etching process. 

The etching process consists of using ammonium persulfate as a solution and the tape 

plus copper sample is submerged into the etchant solution.  After 2 hours, the copper foil 
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dissolves away, leaving only the graphene attached to the tape.  The tape is washed with 

distilled water and nitrogen dried.  The sample is ready for transfer to the substrate.   

Transfer:   

The tape (with graphene) is placed onto substrate and with no air bubbles present 

between the tape and the substrate.  The substrate and tape can then be placed onto 

hotplate with temperature of about 125 °C and the tape will instantly come off.  This 

leaves the graphene layer on the sample.  This method can be done multiple times for 

multiple layers of graphene on a sample.  The samples can then be annealed under a 

furnace at 345 degrees C for 4 hours (constant flow rate of Argon gas and hydrogen gas) 

– this step is needed in order to get rid of any tape residue left from the transfer process 

as well as removing any other biomolecules or contaminants from the sample.  
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Appendix B.2 – Circuit Metallization 

Special thanks to Gerry Landis (AFRL/RXS, CTR) for metallizing the circuits used in 

this research.  The circuit metallization is accomplished by sputter deposition under the 

following conditions.  For further information concerning the circuit metallization 

process, please contact him.   

 

Table 7: Sputter deposition chamber parameters 
Sputter Deposition Chamber Parameters for Cr and Au 

Material Cr Au 

Deposition Rate (m/s) 4.0x10-10 3.0x10-10 

Voltage (V) 600 600 

Current (A) 0.88 0.188 

Chamber Gas (Argon) 5.0x10-6 5.0x10-6 

Vacuum Pressure (Torr) 5.0x10-3 6.0x10-6 
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Appendix B.3 – Graphene Functionalization 

Reference Chen’s work [15] and modify 6mM pyrenebutanoic acid, succinimidyl ester 

(PBASE) in N-N dimethylformamide (DMF) to 10mM PBASE in DMF. 

1.  Prepare a 10mM solution of PBASE in DMF. 

2.  Place graphene functionalized circuits in a 400mL glass beaker (see figure below) 

3.  Use a glass pipette to transfer 5.0 µL of PBASE onto the graphene functionalized area. 

4.  Cover beakers with Parasol M paper.   

5.  Let the graphene functionalize for 1 hour at room temperature (303K). 

6.  Rinse circuits with 1mL pure DMF 

7.  Dispose of waste products properly. 

 

Figure 60:  Circuits readied for PBASE functionalization.  Recommend actions be 
performed under a working fumehood as DMF is toxic. 
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Figure 61:  Graphene functionalized with 5uL of 10mM PBASE in DMF. 

 

Protein immobilization: 

1.)  Place circuit in a petri-dish or somewhere it can be covered.  
2.) Pipette a 5.0 µL solution of 50 µM ssDNA onto the graphene-PBASE functionalized 
area. 
3.)  Add 5.0 µL deionized H2O to help disperse the ssDNA across the functionalized area.  
4.)  Add a small amount of deionized H2O to the petri-dish to equalize vapor pressure and 
minimize evaporation.   
5.)  Cover circuits and wait for 18 hours at room temperature (303K) 
 

 
Figure 62:  Four circuit ssDNA functionalization.  The droplets are 
10uL, 50uM concentrations of ssDNA in deionized water.  The 
functionalization time is 18 hours.  Deionized water is placed around 
the corners of the petri dish to slow down evaporation.  The petri dish 
lid was put back on after this shot was taken. 
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